

# **Technical Report for Biorefining Plant**

# OU Biorefining Technical Report for Biomass Production

Submitted To Dr. Miguel Bagajewicz Professor of Chemical Engineering University of Oklahoma Sarkeys Energy Center

By Tony Tran, Tejas Patel, Trenika Iland, John Truong, Bambo Ibidapo-Obe, and Jeremy Constantino Chemical Engineering Team OU Biorefining Sarkeys Energy Center Room M206

30 April 2004

# **Biorefining**

By: Tony Tran, Tejas Patel, Trenika Iland, John Truong, Bambo I-Obe, and Jeremy Constantino

#### Capstone Design Project – University of Oklahoma – Spring 2004

## **Executive Summary**

The demand of fermentation chemicals in the United States is steadily growing as many chemical processing industries aim to take advantage of the environmentally friendly profile of biochemicals and products. Therefore, the purpose of this report is to evaluate the most economically favorable fermentation process as well as the raw material choice that will best produce the end products and propose a business plan for a biorefining plant. The chemicals evaluated that can be produced by fermentation are succinic acid, fumaric acid, propionic acid, and ethanol, each with various end uses. Characteristics of good bio based products are those that are biodegradable, non toxic, and generate less volatile organic compounds. By investigating these characteristics, we proved that upstream and downstream chemical production by fermentation is more environmentally sound, can pass environmental regulations, stimulates rural economic growth, and lowers overall economic costs.

Input parameters were provided into a reducible mathematical model to determine which biorefining investments are most profitable, what raw materials should be used, as well as their location and demand. As a result, it was determined that the process should include the milling of corn into sugar, which is fermented to produce chemicals that can be used to develop plastics and solvents. Different potential plant locations and production rates were analyzed to determine the most profitable scenario.

The model considered the variation of the total capital investment to determine the investment that would maximize the net present value. From the total capital investment, the investment opportunities for each process were determined from the mathematical model. This model considered the mass balances, equipment cost, material demands and supplies, and the market prices for each potential process. The material balances and equipment cost pricing was determined based on simulation of the process flow.

The total initial capital investment available at the beginning of the project is \$150 million. With this initial capital, the net present value for this investment is \$321 million. This plant will be built in Dubuque, Iowa with corn as the agricultural source of the biorefining process. The initial annual total capacity for the project should be 180 million pounds, but with expansion opportunities, the final annual total capacity is 550 million pounds. The plant will include the production of succinic acid, ethanol, propionic acid, and fumaric acid.

It is recommended that a more thorough analysis be performed to determine different investment possibilities and future expenditures.

# TABLE OF CONTENTS

| 1. Introduction                                   | 5    |
|---------------------------------------------------|------|
| 1.1 Project Purpose                               | 7    |
| 1.2 Market Analysis / Demand                      | 9    |
| 2. Plant Design                                   | . 13 |
| 2.1 Fermentation Processes                        | . 13 |
| 2.2 Bacteria                                      | . 14 |
| 2.3 Process Description                           | . 14 |
| 2.3.1 Citric acid (Upstream section)              | . 15 |
| 2.4 Ion Exchange Column                           | . 16 |
| 2.5 Purification                                  | . 17 |
| 2.5.1 Citric Acid (Downstream section)            | . 17 |
| 2.5.1.1 Citric Acid Equipment Costs               | . 18 |
| 2.5.2 Acetic acid (Downstream Section)            | . 18 |
| 2.5.2.1 Acetic Acid recovery                      | . 19 |
| 2.5.2.2 Solvent Rectification                     | . 20 |
| 2.5.2.3 Choice of a Suitable Extraction Column    | . 21 |
| 2.5.2.4 Acetic Acid Equipment Costs               | . 21 |
| 2.5.3 Purification of Succinic Acid               | . 22 |
| 2.5.3.1 Succinic Acid Equipment Costs             | . 23 |
| 2.5.4 Propionic Acid                              | . 23 |
| 2.5.4.1 Propionic Acid Equipment Costs            | . 24 |
| 2.5.5 Purification Conclusion                     | . 25 |
| 3. Process Economics                              | . 26 |
| 3.1 Operating Cost Estimation                     | . 27 |
| 3.1.1 Labor                                       | . 28 |
| 3.1.2 Waste Treatment / Disposal                  | . 29 |
| 3.1.2.1 Carbon Dioxide Waste                      | . 30 |
| 3.1.2.2 Biomass Waste                             | . 31 |
| 3.1.2.3 Wastewater                                | . 32 |
| 3.1.3 Utilities                                   | . 32 |
| 3.1.3.1 Electricity                               | . 32 |
| 3.1.3.2 Water                                     | . 34 |
| 4. Mathematical Model                             | . 37 |
| 4.1 Model Input                                   | . 38 |
| 4.1.1 FCI and operating costs versus production   | . 38 |
| 4.1.2 Freight costs/transportation issues         | . 41 |
| 4.2 Model Equations and Constraints <sup>17</sup> | . 41 |
| 4.2.1 Constraints                                 | . 43 |
| 5. Mathematical Model Results                     | . 44 |
| 5.1 Initial Plant Specification                   | . 44 |
| 5.2 Expansion Opportunities                       | . 45 |
| 5.2.1 Expansion Opportunity 1 (2007-2009)         | . 45 |
| 5.2.2 Expansion Opportunity 2 (2009-2011)         | . 46 |
| 5.2.3 Expansion Opportunity 3 (2011-2013)         | . 46 |

| 5.2.4 Expansion Opportunity 4 (2013-2015)     |    |
|-----------------------------------------------|----|
| 5.2.5 Expansion Opportunity 5 (2015-2017)     |    |
| 5.2.6 Expansion Opportunity 6 (2017-2019)     |    |
| 5.2.7 Expansion Opportunity 7 (2019-2021)     | 49 |
| 5.2.8 Expansion Opportunity 8 (2021-2023)     | 50 |
| 5.2.9 Expansion Opportunity 9 (2023-2025)     | 50 |
| 5.3 Deterministic Mathematical Model Overview |    |
| 5.4 Stochastic Model Results                  |    |
| 5.4.1 Uncertainty Model                       |    |
| 6. Conclusion                                 |    |
| Appendix                                      |    |
| 6. Conclusion<br>Appendix                     |    |

#### 1. Introduction

In a time marked by increasing crude oil prices, waste management problems, and continued global pollution, a new generation of bio-based products and chemicals has emerged representing an attractive alternative to fossil fuel derived products. Bio-based products are those that use agricultural materials as their main ingredient. These products are made from renewable resources and in most cases do not contain synthetics, toxins, or substances dangerous to the environment. By using fermented bio-based products, reliance on petroleum is avoided and good uses of our natural resources are promoted.

Encouraged by a number of policy initiatives, the chemical industry is shifting from concentration on capital and highly toxic energy intensive processes which use nonrenewable feedstocks to more progressive, knowledge-intensive processes using renewable agricultural feedstocks that are more environmentally friendly. This new trend in environmental viability has promoted the recovery of various fermentation products to use in industry. For the most profitable economic considerations, the approach is to combine a designed fermentation process and downstream separation into one integrated unit.

Bio-based products are those that use agricultural materials as their main ingredient. These products are made from renewable resources and in most cases do not contain synthetics, toxins, or substances dangerous to the environment. By using fermented biobased products, reliance on petroleum is avoided and good uses of our natural resources are promoted.

To help alleviate environmental concerns, there are an increasing number of national and local policies that promote the development of bio based products. As these initiatives continue to be encouraged, the uses of nonrenewable fossil fuel derived products continue to be phased out. These strict environmental regulations increase the cost of extracting, processing, using, as well as the disposal of products made from fossil fuels. So as a better understanding of how solvents and chemicals affect the society, government agencies continue to pass regulations as shown in Figure 1, by the sharp rise in the number of laws and amendments that have been implemented.



**Figure 1:** Cumulative federal regulations. CAA-Clean Air Act, OSHA–Occupational Safety and Health Administration, SARA-Superfund Amendments and Reauthorization Act of 1986, CAAA-Clean Air Act Amendment, PPA-Pollution Prevention Act of 1990.<sup>1</sup>

As these regulations continue to mount, much notice is being taken and more products are being produced as the demand for fermentation chemicals steadily increases. Many of the value-added, environmentally friendly products are:

- Food products (oils, starch, sweeteners)
- Industrial products
- Chemical intermediates
- Fuels
- Solvents
- Industrial enzymes
- Biodegradable plastic resins

Other than the fact that they are safer for the environment, also allowing these products grow in popularity are their economic benefits. In addition to lowering capital costs, operating costs are also reduced due to reduced energy consumption, decreased overall steps in the process, and safer hazardous waste removal. Products for downstream use can be disposed of inexpensively.

Furthermore, the use of agricultural feedstocks in chemical processing stimulates rural economic development. Because the feedstocks are bulky and costly to transport, processing and manufacturing facilities are likely to locate near the region in which the raw material is located. These facilities which include waste plants, water treatment plants, and additional warehousing units, provide more income and opportunities to surrounding rural communities.

<sup>&</sup>lt;sup>1</sup> http://ehp.niehs.nih.gov/members/1998/Suppl-1/253-271sherman/full.html

#### 1.1 Project Purpose

In an effort to capitalize on these economic and environmental benefits of products derived from agricultural resources, the competition to produce fermentation chemicals in the United States is sharply on the rise. Therefore, the purpose of this report is to evaluate the most economically constructive fermentation process, using the most optimal raw material. The second concern for this report is to select the best end product to sell in order to produce a viable business plan for construction of a biorefining plant.

For this study, there were seven different fermentation processes evaluated which include, acetic acid, citric acid, fumaric acid, succinic acid, lactic acid, propionic acid, and ethanol, each with various end product uses. Summarized in the Table 1, is a list of each process and its various end uses.

| Chemical          | End Uses                                                                                                               |
|-------------------|------------------------------------------------------------------------------------------------------------------------|
| Acetic Acid       | industrial solvent, intermediates for other chemicals, food acidulant                                                  |
| Citric Acid       | food, beverages, industry, detergents<br>detergents, cosmetics                                                         |
| Fumaric Acid      | dyes, acidulant, antioxidant,<br>intermediate for synthetic resins                                                     |
| Succinic Acid     | Pharmaceuticals, toiletries, paper,<br>Beverages, dyes, manufacture of<br>lacquers                                     |
| Lactic Acid       | Pharmaceuticals, personal care,<br>plastics, industrial applications,<br>food, beverages, intermediate for<br>lactates |
| Propionic<br>Acid | animal feed/grain preservatives<br>calcium & sodium salts                                                              |
| Ethanol           | Plastics, herbicides, fuels, solvents, chemicals, beverages                                                            |

| Fable 1: | Chemicals | Produced | by l | Fermentation <sup>2</sup> |
|----------|-----------|----------|------|---------------------------|
|          |           |          | •    |                           |

<sup>&</sup>lt;sup>2</sup> http://www.the-innovation-group.com/ChemProfiles

For the synthesis of the vast array of chemicals and numerous products above, many feedstock elements can be used along with the agricultural resource of choice. The possible fermentation processes evaluated as well as the microorganisms involved are shown in Figure 2.



Several factors are considered in making the best feedstock selection, some of which are listed below

Ethanol Saccharomyces ceri

Citric Acid

Acetic Acid

Clostridium lentoc

- Price; this may have political and economical influences<sup>5</sup>
- Availability; seasonal availability for example means additional requirements for long term storage. This is undesirable unless the feedstock is used for waste and disposal purposes.<sup>5</sup>
- Effect on process productivity; the best feedstocks to use are those that satisfy thAspergillus nige nutritional requirements for the microorganism. Additionally, the feedstock should provide good productivity **Edutionse** bility.<sup>5</sup>
- Diversification and process flexibility <sup>5</sup> •
- Stability and consistency; this should be batch to batch and year to year<sup>5</sup>
- Ease of handling, transport, and storage<sup>5</sup> •

**Fumaric Acid** Rhizopus

<sup>&</sup>lt;sup>3</sup> <u>http://www.oit.doe.gov/chemicals</u> <sup>4</sup> http://www.ryanherco.com/Industries/Health/Articles/BiotechnologyBook/Health03\_Microorganisms.pdf, *Propionibacterium acidi* 

<sup>&</sup>lt;sup>5</sup> http://www.uoguelph.ca/~hlee/426%20feedstocks.htm

Once the best raw material feedstock selection is made, the biorefining process, which includes fermentation and purification, may begin and various platform chemicals can be produced.

### 1.2 Market Analysis / Demand

In the United States it is forecasted that the demand for fermentation chemicals will exceed \$9 billion in 2007 and the volume demanded is expected to exceed 30 billion pounds.<sup>6</sup> Based on the market analysis in Table 2 for all seven chemicals, the major uses for these fermentation chemicals are expected to come from the areas of solvents, plastics and fibers, and fuels.

|                     | Demand                                   | Growth Outlook                              | Price                                      |
|---------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|
| Acetic Acid         | 2002: 5.6M lbs                           | Historical (1997-2002): 1.2% per year       | Historical (1997-2002): High \$0.27 /lb    |
|                     | 2006: 6.1 M lbs                          | 2% per yr through 2006 in US                | Low \$0.25 /lb                             |
|                     |                                          | 3-4% /yr world wide                         | Current: Low \$0.465 /lb , High \$0.52 /lb |
|                     |                                          |                                             |                                            |
| Citric Acid         | 2003: 5.35 M lbs                         | Historical (1996-1995): 5.5% /yr            | Historical (1996-1999): prices fell        |
|                     |                                          | 3.5% expected over the next 5 yrs           | from \$0.52 to \$0.42 / lb                 |
|                     |                                          |                                             | Current: \$0.65 /lb                        |
|                     |                                          |                                             |                                            |
| Fumaric Acid        | 2003: 4.34 M lbs                         | Historical (1994-1999): 1.6% /yr            | Historical (1994-1999): High \$0.65 /lb    |
|                     |                                          | 1.6% /yr through 2005                       | Low \$0.58 /lb                             |
|                     |                                          |                                             |                                            |
|                     |                                          |                                             | Currently: \$0.65 /lb industrial grade     |
|                     |                                          |                                             | \$0.85 /lb food grade                      |
|                     |                                          |                                             |                                            |
| Succinic Acid       | PVP (polyvinly pyrrolidinone)            | 6-10% /yr Overall                           | PVP sells for \$3.00-\$8.00 /lb            |
|                     | 50M lbs/yr                               |                                             | depending on grade                         |
|                     | ltaconic acid - 20M lb/yr world-wide     |                                             | Itaconic acid sells for \$2.00 /lb         |
|                     |                                          |                                             |                                            |
| Lactic Acid         | 50,000 tons/yr total                     | food/beverage: 3.5 - 4% /yr b/n 2002-2007   | Currently-                                 |
|                     | 50 M lb/yr for food use                  | pharmaceuticals, personal care: 5.2% lyr    | food grade \$0.80 /lb                      |
|                     | 300 M Ib/yr for PLA                      | b/n 2002-2007                               | technical grade \$0.85 /lb                 |
|                     |                                          | Industry: PLA 22% /yr, Ethyl lactate 5% /yr | PLA \$1.00-1.50 /lb                        |
|                     |                                          | b/n 2002-2007                               |                                            |
|                     | Industrial (austration and formantation) | Listeriael (1000-2004): 7.0.00 km           | le dustri al                               |
| Ethanoi             | 2001: 260M col                           | 10.5% unthrough 2005 projected              |                                            |
|                     | 2001. 209Wigal                           | 10.5% yr through 2005 projected             | Currently \$2.65 (ad                       |
|                     | 2005. 267 M gai projected                |                                             | Eucl/grade)                                |
|                     | Fuel Food Reverages (all formentation)   |                                             | High \$1.81 (gal Low \$0.00 (gal           |
|                     | 2001: 1 7M col                           |                                             | Currently \$1.55 /gal                      |
|                     | 2001: 1.7M gai                           |                                             | Currentiy \$1.557gai                       |
|                     | 2000. 2.7 Sivi gai projected             |                                             |                                            |
| Propionic           | 2002: 204M lbs                           | Historical (1997-2002): 1.2% /vr            | Historical(1997-2002); High \$0.49/lb      |
| Acid                | 2006: 219M lbs projected                 | 1 8% Arr through 2006 expected              | Low \$0.41/b                               |
| (Sodium Propionate) | 2000. 2 rom bo projectou                 |                                             | Current: \$0.51-\$0.54/lb                  |
| (                   |                                          |                                             |                                            |

 Table 2: Market Analysis<sup>6,7</sup>

<sup>&</sup>lt;sup>6</sup> http://mindbranch.com/listing/product/R154-858.html

Annually, the global consumption of solvents is estimated at 30 billion lb/yr while the United States consumptions are in excess of 8.4 billion lb/yr.<sup>7</sup>

Solvents are widely used in many industries in products such as adhesives, paints, inks, and cleansers. This wide variety of uses is what is expected to drive the demand for fermented solvents.

The world market for plastic related products is a demand of more than 200 billion lb/yr with a United States demand of about 80 billion pounds each year. It is projected that the plastics and fibers market will see the fastest growth through 2007<sup>7</sup> mainly sparked by the 22% growth outlook and demand of polylactic acid.

Due to favorable tax provisions such as the Fuel Ethanol Tax Incentive which runs through 2007, it is projected that fuel will remain the largest market for fermentation products. Fuel is projected to account for 92% of fermentation ethanol use. However, much uncertainty exists in this market, since demand is highly sensitive to politically derived influences. Once an energy bill is decided upon by the House and Senate, major fluctuations in the demand for ethanol is expected to no longer be a problem.<sup>8</sup>

Overall, based on the growth outlook and price from Table 2 for all seven chemicals studied, the market demands and price projections for 2005 to 2025 are graphed below in Figures 3 and 4 to show the expected trends.

<sup>&</sup>lt;sup>7</sup> <u>http://pep.sric.sri.com/Public/Reports/Phase\_2003/RP206A/RP206A.html</u>

<sup>&</sup>lt;sup>8</sup> http://www.the-innovation-group.com/ChemProfiles/Ethanol.htm



Figure 3: Market Demands of Biomass Production for Year 2005 to 2025<sup>9</sup>



Figure 4: Projected Market Prices of products for Year 2005 to 2025<sup>8</sup>

<sup>&</sup>lt;sup>9</sup> http://www.the-innovation-group.com/ChemProfiles/

It is expected that the demand for fermentation chemicals will steadily grow due its environmental profile. This positive profile will increase consumer interest and industrial applications of fermentation chemicals. As a result, it is assumed that more competition will arise to take advantage of the demand, and this will result in an over capacity of production. Therefore, because price is a combination of supply and demand, it is projected that prices will drop and remain fairly steady over the lifetime of our project.

#### 2. Plant Design

This section describes the possible design opportunities for glucose fermentation producing seven profitable processes. Each of these processes includes fermentation and purification in order to sell the final, sanitized product. Each acid (citric, acetic, succinic, propionic, fumaric, lactic and ethanol) can be generated from a biomass raw material. A detailed analysis of the processes is performed first by utilizing literature research and then referring to computer simulation models. An overall economic analysis has been performed at an annual capacity of 32 million pounds produced of each acid.

#### 2.1 Fermentation Processes

The production processes of four different acids (acetic, citric, propionic and succinic) were performed. Each of these acids is generated using a nearly identical process using different bacteria used dictating the end result. The software package "SuperPro Designer" was used to simulate the fermentation process of each design.

For each fermentation process, the production of each acid from glucose had to be known. Below are the following equations<sup>10</sup> inputted for each fermentation reaction.

Acetic acid  

$$C_6H_{12}O_6 + 7O_2 \rightarrow CH_3COOH + 4CO_2 + 4H_2O$$

Citric acid

$$2C_6H_{12}O_6 + \frac{27}{2}O_2 \rightarrow C_6H_8O_7 + 6CO_2 + 8H_2O$$

Propionic acid

$$C_6H_{12}O_6 + \frac{11}{2}O_2 \rightarrow C_3H_6O_2 + 3CO_2 + 3H_2O$$

Succinic acid  

$$C_6 H_{12}O_6 + \frac{11}{2}O_2 \rightarrow C_4 H_6 O_4 + 2CO_2 + 3H_2 O_4$$

In order to obtain the glucose necessary for the reactions, it must be obtained from raw materials. Various raw materials are grinded together with water to form a slurry mixture. Saccarification takes place and glucose is formed.

<sup>&</sup>lt;sup>10</sup> <u>http://www.chemindustry.com/chemicals/index.asp?=search</u>

#### 2.2 Bacteria

All the fermentation processes are catalyzed by the appropriate bacteria. They are grown along with inoculum seeds in small laboratory vessels. Once the nutrients and inoculum seeds are grown sufficiently, they form a slurry which is transferred to the fermentors. The cost of using bacteria was found to be \$0.80 per ton. The theoretical yields for each of the fermentation processes were found and are shown in the following table. The theoretical yield for each of the processes is the amount of glucose converted into the respective products.

| Table 3: Theoretical yields for each fermentation process |       |                              |  |
|-----------------------------------------------------------|-------|------------------------------|--|
| Bacteria Name                                             | Yield | Product                      |  |
| Anaerobiospirillum succiniciproducens                     | 87%   | Succinic Acid <sup>11</sup>  |  |
| Lactobacillus delbrueckii                                 | 95%   | Lactic Acid <sup>12</sup>    |  |
| Saccharomyces cerevisiae                                  | 67%   | Ethanol <sup>13</sup>        |  |
| Aspergillus niger                                         | 66%   | Citric Acid <sup>14</sup>    |  |
| Clostridium thermocellum                                  | 100%  | Acetic Acid <sup>15</sup>    |  |
| Propionibacterium acidipropionici                         | 67%   | Propionic Acid <sup>16</sup> |  |
| Rhizopus                                                  | 69%   | Fumaric Acid <sup>17</sup>   |  |

Two other streams are added to this batch reactor. An ammonia stream is charged into this fermentation vessel. The purpose of this stream is to provide an ammonia source as a means of nutrients for the bacteria. Another stream is charged into the reaction vessel containing compressed air. The air is a source of oxygen for the glucose and bacteria. The oxygen creates an aerobic environment for which the reaction can takes place.

Once all three streams have entered the fermentation vessel, a reaction occurs that produces carbon dioxide, water, acid and biomass. This product stream is referred to as the fermentation broth. This broth is next shipped to a nearby storage tank where it is intermittently transported to its designated purification route.

#### 2.3 **Process Description**

The SuperPro simulation flowsheet is shown in Figure 6. As stated previously, the difference in each acid production exists in the bacteria used, which determines the stoichiometry of the reaction. Once glucose is obtained from the upstream milling of the the chosen raw material, it is combined with a salt solution. This stream is sent to a

<sup>&</sup>lt;sup>11</sup> "Enhanced Production of Succinic Acid"

<sup>&</sup>lt;sup>12</sup> "Lactic Acid Production in a Stirred-Tank Fermentor"

<sup>&</sup>lt;sup>13</sup> www.es.anl.gov

<sup>&</sup>lt;sup>14</sup> www.fgsc.net/asilomar/citric.html

<sup>&</sup>lt;sup>15</sup> scifun.chem.wisc.edu/chemweek/AceticAcid

<sup>&</sup>lt;sup>16</sup> "Propionic Acid Production by batch fermentation"

<sup>&</sup>lt;sup>17</sup> "Simultaneous Production and Recovery of Fumaric Acid"

mixer where it is combined with a water source. The processed water stream and glucose/nutrient stream must be in a 10:1 mass ratio. The water introduced into this storage ensures that the glucose and nutrients will be in a slush phase as it enters the fermentor. After the two streams are mixed in a storage tank, they are transported to a heat sterilizer which is responsible for decontamination of the glucose stream. The introduction of the bacteria to the glucose requires this heat sterilizer because contaminated conditions may disrupt production. Once this stream has been heat sterilized it is transported into a batch reactor.

#### 2.3.1 Citric acid (Upstream section)



Figure 6: Citric acid fermentation design flowsheet<sup>3</sup>

The above flow sheet is for the citric acid production obtained from the SuperPro Designer simulation. The carbon source of fermentation is diluted from about 90% fermentable sugars content to 10% with salts in a blending tank (V-101). There are three blending tanks operating in parallel. The purified raw material solution is heat-sterilized (ST-101). This is performed in order to ensure that the bacteria and glucose avoid contamination. Nutrients (i.e., sources of ammonium, potassium, phosphorous, magnesium, copper, and zinc) are dissolved in vater (V-101) and heat-sterilized (ST-101).Gluddse - fetateontatiobatchysic mass 2 days, and the production is handled by three fermentSatsop255atikg/batchtaggenedsn/tode. Since the plant operates around the clock, one fermentation cycle is initiated daily and another one is completed eight hours after one. Each fermentor has a vessel volume of 350 m<sup>3</sup> and handles broth of around 207.4 m<sup>3</sup>. A pure culture of the mold *Aspergillus niger* is used to inoculate the all fermentor Blending/storage

E-15

P-7 E-5

V-8

Air - 6

Nutrier

When optimum growth of mycelium is reached, the contents of the seed fermentor are transferred to the next stage fermentor. Similarly, this larger seed fermentor inoculates the production fermentor with about 10% volume of actively growing mycelium broth. Air is supplied by a compressor (G-101) at a rate that gradually increases from 0.15 to 1.0 VVM (volume of air per volume of liquid per minute). Cooling water removes the heat produced by the exothermic process (2,990 kcal/kg of citric acid formed) and maintains the temperature at 28 °C. The fermented broth is discharged into the holding tank (V-103), which acts as a buffer tank between the batch upstream section and the continuous downstream section. After the holding tank, the fermentation broth can be intermittently transferred through ion exchange columns used to begin the purification process.

#### 2.4 Ion Exchange Column

An ion exchange is the reversible exchange of ions between a liquid and a solid. This process is generally used to remove undesirable ions from a liquid and substitute acceptable ions from the solid (resin). Ion exchange chromatography is applicable to the separation of almost any type of charged molecule, from large proteins to small nucleotides and amino acids. This method is an adsorption process in which charged particles bind reversibly to molecules such as proteins. For this process diethyl aminoethyl (DEAE) is used. The ionic properties of DEAE are dependent on pH and have proven to work well within the pH range 4 to 8. Depending on the identity of the ions that a resin releases to the water, the process may result in purification of water or in control of the concentration of a particular ion in a solution.

Each fermentation broth stream is sent through an ion exchange column in order to reduce the broth to simplify the acid and water mixture which reduces the complexity of the separation process. Once the streams are sent through the ion exchange columns, the exiting stream sent for purification is the acid (acetic, lactic, citric, etc.) and water. The other exiting stream is the waste stream that is handled in the proper manner which is discussed in detail later.



Figure 7: Ion Exchange Column design<sup>18</sup>

<sup>&</sup>lt;sup>18</sup> ntri.tamuk.edu/fplc/ion.html

#### 2.5 Purification

Purification for each acid varies according to the properties of the acid in the fermentation broth and desired final product. For example, propionic acid is not as marketable as is sodium propionate, the salt; therefore, the purification process involves a step that crystallizes the final product. SuperPro and Pro/II were the simulation software used to create a realistic model. Described below are the simulations for purification of each acid.

#### 2.5.1 Citric Acid (Downstream section)

P-2

17



**Figure 8:** Citric Acid purification flowsheet<sup>3</sup>

V-2

Purification starts with the removal of biomass by a rotary vacuum filter (RVF-101). Water clarificated 58975.4 kg/batter of lows to an agitated reaction vessel (V-104). Approximate/batter 1 part of hydrated lime, Ca(OH)<sub>2</sub>, for every 2 parts of liquor is slowly added to precipitate calcium citrate. The lime solution must be very low in magnesium content if losses due to the relatively soluble magnesium citrate are to be avoided. Calcium citrate is separated by a second rotary vacuum filter (RVF-102) and the citrate-free) is disposed of. The calcium citrate cake is sent to another agitated reaction vessel (V-105) where it is acidified with dilute sulfuric acid to form a precipitate of calcium sulfate (gypsum), A third filter (RVF-103) removes the precipitated gypsum and yields an impure citric acid

E-5

V-1۶

solution. Careful control of pH and temperature of the precipitation steps is important for maximizing the yield of citric acid. The pH is maintained by the ammonia stream introduced into the fermentation vessel. A controller is set in place to inject a necessary amount of ammonia as the pH decreases below desired levels. The resulting solution is concentrated and crystallized using a continuous evaporator/crystallizer (CR-101). The crystals formed are separated by filtration (RVF-104) and dried in a rotary dryer (RDR-101). The overall conversion of glucose obtained from corn milling to citric acid produced and marketed is 66.0% as provided by the simulation in SuperPro. According to literature values, the conversion rate is expected to be 66.7% which very closely correlates with the reported value. If the final product is required in high purity, treatment with activated carbon may precede crystallization to remove colorants. Ion exchange is used to remove metal ions and other ionic species.

#### 2.5.1.1 Citric Acid Equipment Costs

The process flow diagram (PFD) for the purification and fermentation of citric acid is shown in the above sections. In Table 4, the facts of the equipment are described detailing the number of units, size, and purchasing cost.

| Table 4: Citric Acid Equipment Details <sup>19, 20</sup> |       |                         |           |
|----------------------------------------------------------|-------|-------------------------|-----------|
| Equipment                                                | Units | Size per Unit           | Cost (\$) |
| Blending/Storage                                         | 3     | 21000 gal               | 110000    |
| Sterilizer                                               | 3     | 80 m <sup>3</sup> /hr   | 200000    |
| Air Filtration -1                                        | 7     | $4m^3/s$                | 25000     |
| Compressor                                               | 2     | 2350 kW                 | 270000    |
| Air Filtration -2                                        | 6     | $8 \text{m}^3/\text{s}$ | 15000     |
| Fermentor                                                | 5     | 350000 L                | 1200000   |
| Blending/Storage 2                                       | 20    | 80000 L                 | 110000    |
| Reactor vessel -1                                        | 3     | 27500 L                 | 323000    |
| Rotart vaccum -1                                         | 2     | $65 \text{ m}^2$        | 115000    |
| Reaction vessel - 2                                      | 7     | 35000 L                 | 364000    |
| Rotary vaccum -2                                         | 2     | $47 \text{ m}^2$        | 91200     |
| Crystallizer                                             | 1     | 30000 L                 | 35000     |

#### 2.5.2 Acetic acid (Downstream Section)

Acetic acid is one of the most widely used carboxylic acids. It is used in the synthesis of acetic esters, or as a solvent, in the manufacture of cellulose acetate or pharmaceutical products. In these processes, aqueous solutions of acetic acid are used and economically recovered. The separation of acetic aid acid and water by simple rectification is very difficult because it requires a column with many stages and a high reflux ratio, thus incurring high running costs. The final conversion of glucose to acetic acid as

<sup>&</sup>lt;sup>19</sup> www.matche.com

<sup>&</sup>lt;sup>20</sup> www.mcmaster.com

determined by products from SuperPro Designer is 63.3% which deviates largely from the 100% expected yield. The final conversion is ratio of the final product to the amount of glucose is used.

In practice other processes are used depending on the concentration of acetic acid present in the feed. Between 50% and 70% water / acetic acid, extractive distillation is used. By adding a third component, the volatility of water is increased and the separation can be achieved with less energy. Below 40% acetic acid, liquid-liquid extraction is most appropriate. Acetic acid is extracted from water by a suitable solvent in order to obtain substantially pure acetic acid. Liquid-liquid extraction is also useful, independent of concentration, when other contaminants such as salts interfere with direct distillation. QVF is able to offer systems using either technique.

#### 2.5.2.1 Acetic Acid recovery

In order to minimize energy costs in the distillation stage, a lower boiling point solvent is usually chosen. In practice, ethyl acetate or methyl isobutyl ketone are usually preferred.



Figure 9: Extraction plant for recovery of acetic acid<sup>21</sup>

The plant displayed above for recovery of acetic acid comprises, essentially, the extraction column, the solvent recovery column and the aqueous phase stripping column. Since the feed mixture has a higher density than the solvent, it is introduced at the top of the extraction column. It flows to the bottom of the column transferring acetic acid to the solvent. The usual concentration in the bottom is 0.1-0.5%, yet it is still possible to improve this if required.

<sup>&</sup>lt;sup>21</sup> Separation Process Principles, Seader and Henley

In the solvent rectification column, solvent and water leave the column at the top. After condensation the two liquid phases are separated. A part of the solvent phase is refluxed to the column. The remainder is returned to the extraction column.

The aqueous phase is stripped of any solvent in the stripping column. Under certain conditions, it is also important to reflux a part of the aqueous phase to the column. The bottoms product from the solvent recovery column contains acetic acid, where a concentration of between 95% and 100% can be obtained. If there is a possibility that in the extraction process higher boiling components will go into the organic phase, it is recommended that the acetic acid is removed as a vapor stream. Figure 10 depicts the PRO-II simulation for the acetic acid + water mixture from the fermentation broth to obtain the 96.5 % purity of acetic acid.



Figure 10: Downstream purification of acetic acid<sup>16</sup>

#### 2.5.2.2 Solvent Rectification

The economics of the entire process is strongly dependent on the costs for the separation of the acetic acid from the solvent by distillation. The scale up and the control of this column should be done very carefully. The actual process design depends on the solvent used.

In the system ethyl acetate acetic acid til 780 kg/hr water - 1991 kg/hr ethyl acetate (Boiling point 70.4 Deg. C). The separation by distillation of water and acetic acid in the ethyl acetate can be done without difficulty. As far as operating costs

٧-`

Acetio

ł

P-7

are concerned, one must ensure that the ration of ethyl acetate/water used in the column corresponds to the maximum volatility for acetic acid. Consequently the feeds to the extraction column must be held within closely controlled limits, necessitating a carefully designed control system.

#### 2.5.2.3 Choice of a Suitable Extraction Column

The control system situation can be solved in general with a pulsed column for which the operation conditions must be determined by pilot plant trials. QVF Process Systems has a suitable pilot unit and is able to carry out pilot plant trials on the customer's behalf.

If corrosive substances are present in the mixture, a column fabricated from corrosion resistant materials must be chosen. Borosilicate glass is an ideal material for extraction columns - allowing the drops and interfaces to be readily observed.

#### 2.5.2.4 Acetic Acid Equipment Costs

The process flow diagram (PFD) for the purification and fermentation of acetic acid is shown in the above sections. In Table 5, the facts of the equipment are described detailing the number of units, size, and purchasing cost.

| Table 5: Acetic Acid Equipment Details <sup>14, 15</sup> |       |                         |           |
|----------------------------------------------------------|-------|-------------------------|-----------|
| Equipment                                                | Units | Size per unit           | Cost (\$) |
| Blending/Storage                                         | 3     | 21000 gal               | 110000    |
| Sterilizer                                               | 3     | 80m <sup>3</sup> /hr    | 200000    |
| Air Filtration -1                                        | 7     | $4m^3/s$                | 25000     |
| Compressor                                               | 2     | 2350 kW                 | 275125    |
| Air Filtration -2                                        | 6     | $8 \text{m}^3/\text{s}$ | 15000     |
| Fermentor                                                | 5     | 350000 L                | 1200000   |
| Blending/Storage 2                                       | 20    | 80000 L                 | 110000    |
| Ion Exchanger                                            | 15    | 6300 L                  | 75120     |
| Distillation column                                      | 1     | -                       | 60000     |
| Distillation column                                      | 1     | (D = 3m)                | 95000     |

#### 2.5.3 Purification of Succinic Acid

The purification of succinic acid begins in a reaction vessel, the fermentation broth is introduced to lime. Lime is the common name for calcium hydroxide. In the reaction vessel, succinic acid reacts with this lime forming calcium succinate. Once this reaction has taken place, a rotary vacuum filter removes excess air and dries some of the broth. This calcium succinate cake is sent to another agitated vessel where a dilute solution of sulfuric acid neutralizes the cake. The precipitate formed in this procedure is known as gypsum. A filter is added to the third stream that removes the gypsum, leaving succinic acid with minute impurities. Finally, a crystallizer is used to crystallize the final product, for a high purity is desired. The annual capacity of succinic acid produced in this overall process is 14.77 kg/year. The overall conversion of glucose obtained from corn milling to succinic acid produced and marketed is 59.9% as provided by the simulation in Process simulations. According to literature values, the conversion rate is expected to be 87%.



Figure 11: Succinic Acid Simulation<sup>3</sup>

#### 2.5.3.1 Succinic Acid Equipment Costs

The process flow diagram (PFD) for the purification and fermentation of succinic acid is shown in the above sections. In Table 6, the details of the equipment are described detailing the number of units, size, and purchasing cost.

| Table 6: Succinic Acid Equipment Details <sup>14, 15</sup> |       |                         |           |
|------------------------------------------------------------|-------|-------------------------|-----------|
| Equipment                                                  | Units | Capacity                | Cost (\$) |
| Blending/Storage                                           | 3     | 79500 L                 | 110000    |
| Sterilizer                                                 | 4     | 100m <sup>3</sup> /hr   | 220000    |
| Air Filtration -1                                          | 8     | $4m^3/s$                | 25000     |
| Compressor                                                 | 2     | 2350 kW                 | 275000    |
| Air Filtration -2                                          | 6     | $8 \text{m}^3/\text{s}$ | 15000     |
| Fermentor                                                  | 5     | 350000 L                | 1200000   |
| Blending/Storage 2                                         | 20    | 80000 L                 | 110000    |
| Ion Exchanger                                              | 15    | 6300 L                  | 75000     |
| Reactor vessel -1                                          | 3     | 27000 L                 | 325000    |
| Rotart vaccum -1                                           | 2     | $45 \text{ m}^2$        | 91000     |
| Reaction vessel - 2                                        | 8     | 40000 L                 | 39500     |
| Rotary vaccum -2                                           | 2     | $37 \text{ m}^2$        | 87000     |
| Crystallizer                                               | 1     | 40000 L                 | 410000    |

#### 2.5.4 Propionic Acid

The purification process of propionic acid results in a sodium propionate salt state because it is more profitable to sell in that form. The market demand for propionic acid is extremely low and not profitable. After this was discovered, *OU Biorefining* decided to forgo the production of propionic acid for that of sodium propionate which has higher demand and higher prices yet remain relatively simple to produce. Once the fermentation broth is transferred to the ion exchange column, the stream is reduced to an acid/water mixture. This stream is then mixed in a reaction vessel with sodium hydroxide. This reaction takes place producing the sodium propionate to be sold off in the market. This stream is then transferred to a crystallizer that solidifies the sodium propionate which will be marketed and sold as one revenue option. The annual capacity produced in the procedure simulated is 15.5 kg/year. The conversion of this procedure from glucose yielded a rate of 48.1%. The literature values for the bacteria used report a theoretical yield of 66.7%; however, this is the yield for the acid. It can be expected that transforming the acid to salt may breed an even lower yield since losses must be accounted for in the conversion. The Process simulation is displayed below.



#### V-7

#### 2.5.4.1 Propionic Acid Equipment Costs

Water - 35806 kg/batch

The process flow diagram (PFD) for the purification and fermentation of propionic acid is shown in the above sections. In Table 7, the details of the section described detailing the number of units, size, and purchasing cost.

| Table 7: Propionic Acid Equipment Details <sup>14, 15</sup> |       |                         |           |
|-------------------------------------------------------------|-------|-------------------------|-----------|
| Equipment                                                   | Units | Size per unit           | Cost (\$) |
| Blending/Storage                                            | 3     | 79500 L                 | 110000    |
| Sterilizer                                                  | 3     | 100m <sup>3</sup> /hr   | 220000    |
| Air Filtration -1                                           | 9     | $4m^3/s$                | 25000     |
| Compressor                                                  | 3     | 1300 kW                 | 250000    |
| Air Filtration -2                                           | 5     | $8 \text{m}^3/\text{s}$ | 15000     |
| Fermentor                                                   | 5     | 350000 L                | 1200000   |
| Blending/Storage 2                                          | 19    | 80000 L                 | 110000    |
| Ion Exchanger                                               | 15    | 7100 L                  | 85000     |
| Reaction Vessel                                             | 3     | 35500 L                 | 374000    |
| Crystallizer                                                | 1     | 40000 L                 | 410000    |

## 2.5.5 Purification Conclusion

|                                | Acetic Acid | Succinic Acid | Citric Acid | Propionic Acid |
|--------------------------------|-------------|---------------|-------------|----------------|
| Fermentation Broth<br>Mass (%) | 4.83        | 4.24          | 3.79        | 2.97           |
| Final Conversion to<br>Sell(%) | 63.3        | 59.9          | 66.0        | 48.1           |

The above table shows the final conversion of all the acid. The mass % of the acids in the fermentation broth is between 3 -5 wt %. So it was necessary to purify the acids from the fermentation broth. The final conversion from glucose to acids varied from 50-80 %.

#### 3. Process Economics

The economic evaluation of a project for manufacturing a biological product usually involves the estimation of capital investment, estimation of operating costs, and analysis of profitability.

The capital investment <u>(Citric acid)</u> for a new plant includes three main items: 1) direct fixed capital (DFC), 2) working capital, and 3) startup and validation cost. For preliminary design purposes, the various items of DFC are estimated based on the total equipment purchase cost (PC) using several multipliers. Detailed definitions of the various cost items and additional information can be found in traditional process design textbooks and the technical literature (Peters and Timmerhaus, 1991; Ulrich, 1984; Valle-Riestra, 1983; Garrett, 1989; Seider et al., 1999; Douglas 1988).

| Cost Analysis                       | Calculated values,<br>million (\$) |
|-------------------------------------|------------------------------------|
| Direct Costs                        |                                    |
| Purchased equipment, E'             | 13.9                               |
| Delivery, fraction of E'            | 1.39                               |
| Subtotal: delivered equipment       | 15.29                              |
| Purchased equipment installation    | 7.186                              |
| Instrumentation&Controls(installed) | 2.294                              |
| Piping (installed)                  | 6.116                              |
| Electrical systems (installed)      | 1.682                              |
| Buildings (including services)      | 2.752                              |
| Yard improvements                   | 1.529                              |
| Service facilities (installed)      | 5.352                              |
| Total direct costs                  | 42.2                               |
| Indirect Costs                      |                                    |
| Engineering and supervision         | 3.67                               |
| Construction expenses               | 3.058                              |
| Legal expenses                      | 0.612                              |
| Contractor's fee                    | 0                                  |
| Contingency                         | 0.765                              |
| Total indirect costs                | 8.104                              |
| Fixed capital investment (FCI)      | 50.304                             |
| Working capital (WC)                | 13.608                             |
| Total capital investment (TCI)      | 63.912                             |



Based on different capacity and FCI, the FCI vs. the capacity of the citric acid is plotted in Figure 16.

Figure 16: The FCI of the citric acid production

#### 3.1 Operating Cost Estimation

The operating cost to run a biochemical plant is the sum of all expenses associated with raw materials, labor, utilities, waste disposal, overhead, etc. Dividing the annual operating cost by the annual production rate yields the unit production cost (in \$/kg). Biotechnology is a unique industry when it comes to the range in unit production cost. Table 10 displays the various types of operating costs, their direct or indirect nature, and ranges for their values relative to the total operating cost. Sometimes cost items are categorized as either fixed or variable. Fixed costs are those that are incurred regardless of volume of product output. The clearest case of a fixed cost is depreciation, which is part of the equipment-dependent cost. The clearest case of a variable cost would be the cost of raw materials. Most other costs have a fixed and a variable component. Based on the process simulations results capacity of the citric acid the following operating costs vs. capacity of the citric acid are obtained.

| Table 10: Total operating cost for citric acid production |          |  |  |
|-----------------------------------------------------------|----------|--|--|
| Capacity                                                  | 35 MM lb |  |  |
| Raw materials                                             | 4.50     |  |  |
| Operating labor                                           | 1.34     |  |  |
| UtilityElectricity                                        | 4.46     |  |  |
| Maintenance and repairs                                   | 3.78     |  |  |
| Operating supplies                                        | 0.60     |  |  |
| Total (\$MM)                                              | 14.68    |  |  |



Figure 17: Operating cost for the citric acid production.

#### 3.1.1 Labor

This is estimated based on the total number of operators, which in turn is calculated by summing up the operator requirements of the various operations as a function of time. As will become clear in the examples later in this chapter, the labor requirement in a batch manufacturing facility varies with time. In a single product facility, the number of operators in each shift must be based on maximum demand during that shift. In multiproduct facilities, each product line can employ a certain number of dedicated operators and utilize floating operators during periods of peak demand. In general, smaller facilities tend to utilize a larger number of operators per processing step because they are less automated. For instance, a small biotech company may utilize 2-3 operators to set up a fermentor, whereas in a large, highly automated fermentation facility a single operator may remotely handle the setup of six different fermentors from the control room. In

general, a typical biotech company that deals with high-value products will allocate at least one operator to each processing step, such as centrifugation, membrane filtration, chromatography, etc. during its operation. The setup of a step may require multiple operators for a short period.

| Table 11: Operating Costs |                  |                                     |                                              |  |  |  |
|---------------------------|------------------|-------------------------------------|----------------------------------------------|--|--|--|
| Operating Labor           |                  |                                     |                                              |  |  |  |
| Employees                 | Shifts per day** | Operator<br>rate, \$/h <sup>#</sup> | Annual operating labor cost,<br>million \$/y |  |  |  |
| -                         | 3                | -                                   | 1.336                                        |  |  |  |

#### 3.1.2 Waste Treatment / Disposal

In the construction of a biorefining plant, waste treatment and disposal must be considered. It must be determined if the waste produced from the plant can be recycled into products that can be profitable, and if not, it must be disposed of in a regulatory manner. In the construction of a biorefining plant, potential waste that must be considered is carbon dioxide, unused glucose, and wastewater. The diagram below illustrates the phases of the process and the products and waste produced in each phase.



#### 3.1.2.1 Carbon Dioxide Waste

A byproduct of the formation of alcohol during the fermentation process is carbon dioxide. This carbon dioxide is formed from the conversion of the glucose during the fermentation process, which decreases the amount of glucose available for alcohol production. During this fermentation process, large quantities of carbon dioxide are formed and must be disposed of properly. Instead of disposing carbon dioxide, another option would be to sell the carbon dioxide produced as a refrigerant of cooling agent. This can be done by solidifying it by maintaining it under -80°C.

There are many potential markets available for the selling of carbon dioxide. Below shows the potential markets that can be targeted if it is determined the selling of the carbon dioxide is profitable when considering the installation cost of the recovery equipment.

- Food freezing & refrigeration
- Fire suppression
- Alkali neutralization
- Mould setting
- Inert gas pressurization
- Beverage carbonation

- Tobacco expansion
- Oil well recovery
- Plant growth
- Carrier gas for deodorants
- Breathing stimulant

The existing carbon dioxide production capacity far exceeds the demand in the United States, with the majority of the market being in beverage carbonization and poultry freezing. The estimated total capital investment required for a carbon dioxide production plant is approximately \$3MM plus an additional annual cleaning cost of \$0.5MM. With a national market price of \$75/ton, approximately 20,000 tons must be produced annually for the processes to be considered profitable considering the annual cleaning cost and the capital investment requirement. The projected production of carbon dioxide from a large biorefining plant is estimated to be approximately 10,000 tons. Since this production is less than the profitable production rate, the construction of a carbon dioxide processing plant is not recommended.<sup>22</sup>

Since the selling of the carbon dioxide produced from the fermentation process is not profitable, other options must be considered in its disposal. Currently, carbon dioxide emission is not regulated by the United States government, as stated by the Environmental Protection Agency's Clean Air Act on August 23, 2003. Therefore the release of carbon dioxide in the atmosphere meets all current standards. Furthermore, the

<sup>&</sup>lt;sup>22</sup> www.qlg.org/pub/act\_acp/ethanol/feasibility.htm

emission of carbon dioxide plants from biorefining plants is approximately 99% less than that of petroleum based processes.

To incorporate the cost of carbon dioxide release to the atmosphere, the equipment and installation cost needs to be determined for the discharging process. The cost will be determined based upon the amount of carbon dioxide produced per amount of the main alcohol produced. Then this number can be included into the varying total annualized cost of the deterministic model.

Based on the Process simulations simulations, the total amount of carbon dioxide produced by the process is 70,000 kg per every 6,000 kg of the main chemical produced. Based on this amount, the required cost for equipment and installation are given in the table below:

| Equipment         | Cost (\$) |  |
|-------------------|-----------|--|
| Compressor        | \$27,000  |  |
| Piping            | \$5,500   |  |
| Installation Cost | \$5,000   |  |

Based on these figures, for every 6,000 kg of alcohol produced there is a cost of \$37,500. This will be factored into the deterministic model by adding it into the varying annualized cost per mass of main chemical produced.

#### 3.1.2.2 Biomass Waste

Three potential options were considered concerning the proper use of the biomass waste. These options include recycling or selling of the biomass waste. It will be determined if recycling or selling the biomass waste would be profitable, and if not, the waste be disposed of properly. Recycling the biomass will lead to a higher conversion and possibly lessen raw material usages. Selling the biomass could be profitable if the capital investment requirements for a biomass processing plant are less than the revenue expected. Below discuss each potential option in detail.

The first option is to send the waste stream to other separators to separate out the organic compounds which could be sold to independent markets. However, doing this would require more equipment yielding a higher initial capital investment. The addition of more equipment would result in more labor and maintenance needed increasing the cost. All of these increases lead to a higher product cost and less profit. Therefore, this option was not considered because of the amount of possible extraction of organic compounds from the stream.

The second option is to sell the biomass stream to which independent markets could use the biomass to extract the wanted organic compounds. When entering the sale of the biomass into the mathematical model the NPW only increased by 0.1%. It did not affect the plant the plant location or expansion scenarios, it then provides for only a minimal gain in the NPW from the original value. The increase in NPW is only dictated by selling the biomass product and does not include the addition of any equipment, storage vessels, or labor needed for the sale of the stream. Thus, the increase in NPW of 0.1% is arbitrarily insignificant. Therefore, the sale of biomass did not have a significant impact on the economic life of the project.<sup>18</sup>

Lastly, biomass stream could be sent back to the mixer before fermentation as a recycle stream. The objective of this option is to increase the overall conversion of glucose to alcohol. This option has little or no equipment cost (piping and possibly a pump) and can be easily regulated. The addition of labor would not be necessary. This option is the most cost effective of the three options, and was the best option for the biorefining process. Therefore the selling or disposal of the biomass waste is not recommended.

#### 3.1.2.3 Wastewater

The majority of the wastewater used in the process is to be recycled back to the process. In order for the water to be recycled, it has to first be treated. Treatment of low biological oxygen demand (BOD) wastewater (less than 1,000 mg/L) by a municipal wastewater treatment facility usually costs \$0.20-0.50 per cubic meter. This is the preferred option because high volumes of water are needed for the process. Considering capital expenses required to handle higher capacities of water, water treatment is a minimal expense for most biotech facilities that deal with high value products. For any solid and liquid waste, the disposal cost is approximately \$.05 per kilogram.

The renewal of water is not required in this process because it is just used to aid in the fermentation process. Also, the capital required for the amount initial required is insignificant relative to other capital expenses. Therefore the cost of water is assumed inconsequential to the total capital investment required. The majority of the cost associated with water is the cost of storage and treatment. Based on the biorefining process, possible contaminants introduced to the water includes bacteria, salts, and gypsum. Since the water is going to be recycled back to the fermentation process, the presence of bacteria will not hinder the yield of the alcohol. Therefore it will not be required to remove. On the other hand, all salts and gypsum must be removed from the water before it is recycled.

Based on the data from the Process simulations simulations, the total amounts of salts and gypsum produced is 50,000 kg per 6,000 kg of main chemical produced. Based on the figures presented above, the total cost for the water treatment is \$2,500 per 60,000 kg of the main chemical produced.

## 3.1.3 Utilities

This accounts for heating and cooling utilities as well as electricity and employee amenities to the plant. The amounts are calculated as part of the material and energy balances. These utilities are ultimately broken down into 2 distinct subsections discussed below, Electricity and Water.

#### 3.1.3.1 Electricity

The utility cost for each process can be broken down into two categories, these are Fermentation and Separation Processes. Citric Acid can be used to illustrate utility consumption for this venture as all the fermentation processes are similar, the only difference being the final product. A single batch of Citric acid yields 54,268.7kg, and the fermentation takes 32.7 hours while the separation takes 6 hours. The fermentation process uses up a total of about 240,000kW-h of electricity whilst the separation uses about 50kW-hr. This totals about 250,000kW-h of electricity used over a 48 hr period in order to manufacture one batch of citric acid.

Citric Acid Batch Electic Power Consumption



Figure 19: Citric Acid Power Consumption/Batch time<sup>23</sup>.

The equipment utilized for fermentation is identical for all four processes that are planned for production, as such, Figure 19. will be almost identical for all processes and will be used as a benchmark for the determination of electricity consumption.

For our plant located in Hot-Springs, Arkansas, we would be using about \$15,000 of electricity over a 2 day period for 1 batch of citric acid. Electricity is calculated from Figure 20. at a cost of about \$0.06/kW-h, therefore for a plant of capacity 35MM lb, a total of \$4,395,000 will be spent over the entire year. The unit cost per lb of product comes to \$0.13/lb of product for electricity cost

<sup>&</sup>lt;sup>23</sup> Process simulations Simulation: See Appendix



#### 3.1.3.2 Water

Water is a major utility for all our processes, it is used at a minimum ratio of 10:1 for all our fermentation processes and its also utilized for cleaning of equipment after each batch is completed, A lot of water is utilized for all processes and this water will be recycled, however a significant amount is still needed to flow in the system and this amount can then be recycled and changed as necessary. The figure below shows the process water consumption for a batch of citric acid in the fermentation process, this figure amounts to about 1600 tons each month for each process or 6400tons/12,800,000lbs total water use in a month. This value after dividing by the density of water comes to about 1.5 million gallons/month. The cost of water is calculated at an average rate of \$1.60/1000 gallons. Possible discounts exist for conservation, i.e recycling water which would be applicable in our case.

The total cost of the water utilized by our processes this cost comes to about \$625/batch/process or a total of \$2500 for all processes, if the water is recycled and changed a maximum of twice a month we have a maximum cost of \$5000/month for our water utility cost. The total comes to \$60,000 a year for water utility cost. The figure below illustrates the consumption of water by one of our fermentation processes.

<sup>&</sup>lt;sup>24</sup> Source: U.S. DOE - Energy Information Administration, Electric Power Monthly Annual, August, 2001.

#### **Citric Acid Fermentation Water Consumption**



Figure 21: Water Consumption for Citric Acid Fermentation

Table 11 shows the total annual product cost for citric acid production, the breakdown shows how utilities make up about 30% or 4.46 million dollars

| Table 11: Total operating cost for citric acid production |          |  |  |
|-----------------------------------------------------------|----------|--|--|
| Capacity                                                  | 35 MM lb |  |  |
| Raw materials                                             | 4.50     |  |  |
| Operating labor                                           | 1.34     |  |  |
| UtilityElectricity                                        | 4.40     |  |  |
| UtilityWater                                              | 0.06     |  |  |
| Maintenance and repairs                                   | 3.78     |  |  |
| Operating supplies                                        | 0.60     |  |  |
| Total                                                     | 14.68    |  |  |



Figure 22: The distribution of the TPC for citric acid production.

The raw materials and maintenance expense is the biggest cost of the total annual cost for the production.

Table 12 shows the summary of the operating cost and FCI for different processes. (See Appendix for all the results and figures for these processes.)

| Table 12: Summary of Operating and FCI |                     |                   |                               |  |  |
|----------------------------------------|---------------------|-------------------|-------------------------------|--|--|
| Acids                                  | Capacity<br>(MM lb) | FCI<br>(\$/MM/yr) | Operating cost<br>(\$ MM/ yr) |  |  |
| Succinic Acid                          | 34.9                | 71.9              | 20.5                          |  |  |
| Acetic Acid                            | 37.9                | 49.8              | 14.4                          |  |  |
| Propionic Acid                         | 34.1                | 56.9              | 15.8                          |  |  |

These results are obtained by using the modified Peters & Timmerhaus spreadsheets based upon the capacity and necessary equipment requirements. The mathematical model will give the optimal capacity of each process.
#### 3. Mathematical Model

A Mathematical model was developed utilizing the GAMS program. The purpose of this program is to simulate the Biorefining venture over a predetermined life cycle and generate the most profitable result. The purpose of this model is to provide us with our initial business plan, it also dictates all initial business decisions that will produce our most profitable outcome.



The model is constructed using the flow diagram illustrated above, once the simulation is run, the conclusions can be implemented. The mathematical model also delivers the advantage of customizability, in that one can always return and adjust any input variables that may change **39 Rep**roject advances. The mathematical model is an essential tool for business venture **patiential** as it can significantly reduce **nisk by considering** a plethora of variables that would be impossible without a model. Coupling this with the fact we can customize variables such as prices, and other costs as time passes, the **mathematical** model becomes a crucial and even indispensable factor for this or **Ghemisel Papial(S)** venture.

> Material & Mass Balances

> > 18 chemicals **(**c)

7 Chemica Processes (p)

#### 4.1 Model Input

The mathematical model was designed with the expectation that some inputs will be entered into the model to generate our desired results, these are:

- Fixed Capital Investment (FCI)
- Operating Costs as a function of plant production
- Mass balances obtained from process simulations<sup>25</sup>
- raw materials and their conversion rates to final product
- raw material market, plant, and product market locations
- Distances between raw material markets and plant location
- Distances between plant location and final product markets
- Freight costs for raw materials and product
- Cost of raw materials from different location including state sales tax
- State property taxes for plant locations
- Demand at different product markets over the life cycle of the venture
- Product prices at product markets over the life cycle of the venture
- Salvage value and working capital as a percentage of FCI
- Depreciation and lifespan of project

#### 4.1.1 FCI and operating costs versus production

The net present value of our venture changes with our initial capital investment, the mathematical model predicts the optimal Total Capital investment that gives our maximum NPV. The aim of this input is to determine the optimal initial investment that will return the most profitable decision. It is obvious that the larger the FCI, the greater the capacity of the plant, however, this also leads to as higher operating cost and the possibility of overproducing product that exceeds demand, or not utilizing all available equipment. The model therefore has to find a value that meets a set demand over a given period of time, and maximizes the profit.

<sup>&</sup>lt;sup>25</sup> An addition/improvement on Ethyl Lactate GAMS model.



Figure 13: Total capital investment versus Net Present value

The operating costs for the venture also vary with overall production. These costs change linearly with the intercept at a fixed cost at no production. These operating costs are composed of various different costs such as labor and utilities; they are tabulated below at a capacity of 35 million pounds per year. The figure below displays the Fixed Capital investment vs Capacity for our Succinic Acid Production, this plot determined from Superpro Simulation allows us to determine what FCI is required to meet a certain demand and is an input for the final mathematical model.



Figure 14: FCI of Succinic Acid vs Capacity

The total operating costs based on production is calculated by summing the separate costs associated with the process. These costs are tabulated below and then the operating cost is plotted as a function of capacity.

| Table 8: Annual Operating Cost in Million Dollars |          |  |
|---------------------------------------------------|----------|--|
| Capacity                                          | 35 MM lb |  |
| Raw materials                                     | 12.68    |  |
| Operating labor                                   | 1.34     |  |
| Utilities                                         | 0.99     |  |
| Maintenance and repairs                           | 4.43     |  |
| Operating supplies                                | 1.01     |  |
| Total                                             | 20.45    |  |



Figure 15: Operating cost versus Succinic Acid production

#### 4.1.2 Freight costs/transportation issues

Freight costs may only be found by getting quotes from transportation companies. In order to generalize for the entire United States, median values of \$0.04 per pound per thousand miles were used for the raw materials and \$0.02 for the final product. A company fleet was considered however this option was decided against after consideration. A fleet would require the employment of professional drivers, possible union involvement, Unnecessary expansion of plant to include a transportation department as opposed to a basic shipping and receiving, as well as various equipment operating costs involved with the trucks and government regulations.

Contracting through transportation companies would create competition and allow Biorefining to obtain the best possible price.

#### **4.2 Model Equations and Constraints**<sup>17</sup>

This section includes the necessary equations the mathematical model used to determine how profitable biorefining is over a 20 year period. Additionally, some constraints were necessary in making the mathematical model more realistic. The model maximized the net present worth, determined the plant location, and a constraints maintained that production of any product does not exceed market demand. This last feature is more of a safety 'valve', as the project aims to capture only 1 percent of the market. Constants such as fixed costs and operating cost per pound of product were different for the different products, and a second model was used to determine how much of each product should be manufactured given limited capital. The equations below were obtained from a previous biorefining project that focused on the production of Ethyl Lactate alone.

Below is a summary of the equations utilized in the mathematical model.

 $RawMatCost s_{i,j} = frm * \sum_{rm} \sum_{i,j} ((drm_{i,rm} + \cos trm_{rm}) * yrm_{i,j,tp}) \dots (4)$ where: frm = freight costs for raw materials (\$/lb) drm = distance from raw material market to plant (miles) yrm = weight of raw material shipped (lb) costrm = cost of raw material (\$/lb)

 $OperatingCosts_{i,j} = Op_{fix} + x_{i,j} * O_{OP}$ where: Opfix = \$3,000,000
x = weight of final product shipped per year(lbs/year)
Oop = \$0.331/lb product

$$TotalCosts_{i,tp} = RawMatCost s_{i,tp} + OperatingCosts_{i,tp} + ffp * \sum tp(dpm_{i,j} * x_{i,j,tp})$$
(6)

where: ffp = freight costs for final product (\$/lb) dpm = distance plant to market (miles) TotalCosts<sub>i,j</sub> = RawMatCosts<sub>i,j</sub> + OperatingCosts<sub>i,j</sub>

Revenue<sub>*i*,*tp*</sub> =  $\sum_{j}$  (*prodprice*<sub>*j*,*tp*</sub> \*  $x_{i,j,tp}$ ) – *TotalCosts*<sub>*i*,*j*</sub> .....(7) where: prodprice = price of final product (\$/lb)

 $FCI_{i} = A + B * Capacity_{i} + C * MaxCap_{i,year=20} \dots (8)$ 

where : FCI = fixed capital investment

A = fixed cost for pervaporation units, piping, columns, and electrodialysis units B = cost to expand capacity for fermentation units reactors

C = linear cost for size of columns sized for max production

 $CF_{i,tp} = \operatorname{Re} venue_{i,tp} - (\operatorname{Re} venue_{i,tp} - Dep * FCI_i) * tax_i \dots (9)$ where: CF = cash flow (\$) Dep = depreciation

tax = property tax in specified state

 $TCI_i = (1 + I_W) * FCI_i \qquad (10)$ 

where Iw = working capital as a percentage of FCI (15%)

where: NPW = net present worth (\$)

i = nominal interest rate

Vs = salvage value as a percentage of FCI

Iw = working capital as a percentage of FCI

#### 4.2.1 Constraints

The constraints served the purpose of making the model realistic. For example, it limited the supply by demand and mass flow of raw material.

NumPlants =  $\sum_{i} bi_{i}$ .....(12) where: bi = binary variable, bi = 1 if plant is built, else bi = 0

| $\Sigma_{j} yrm_{i,k,p} \leq yrm \max_{k,p} \dots$                           | (13) |
|------------------------------------------------------------------------------|------|
| where: yrm = lbs of raw materials from market j to plant i at time period tp |      |
| $Cap_i * bi_i \ge \sum_i x_{i,i,t_0}$                                        | (14) |
| where: Cap = capacity of plant i (pounds product/year)                       |      |

| $Demand_{j,tp} * PM \ge \sum_{i} x_{i,j,tp}$  | (15) |
|-----------------------------------------------|------|
| where: Demand = Demand in pounds product/year |      |
| PM = percent of market occupied               |      |

| $\sum_{j} x_{i,j,tp} = \sum_{rm} (yrm_{i,krm} * conv_{rm}) \dots$ | (16)                                 |
|-------------------------------------------------------------------|--------------------------------------|
| where: conv = conversion of raw material to final                 | product (lb product/lb raw material) |

 $Capacity_{i} \ge \sum_{j} x_{i,j,tp}$ (17) where: capacity = maximum production of plant hrsoper = hours in operation per year (~8000)

#### 5. Mathematical Model Results

After inputting all model specifications, the output reported the most feasible plant location, the portion of the total capital investment allocated for each potential markets, the capacity of each potential markets for the plant throughout the lifetime of the project, and the expansion of the potential markets throughout the life of the project to maximize the net present value of the project. Based on the market analysis of possible sources of agriculture, corn was determined to be the source of all glucose milling. Also, a single production plant should be constructed located in Dubuque, Iowa. The following reports the design specification of the plant for the total life of the project, 20 years. This life cycle is broken down into ten intervals of two years. This breakdown is done to accommodate for expansion opportunities based on the increase of market demands of the chemicals produced. The model calculates expansion under the assumption it can occur in 1 operational year.

#### 5.1 Initial Plant Specification

The total initial capacity for the first time period of the plant is  $179 \frac{MM \, lb_m}{year}$ , with an

initial capital investment requirement of \$150,000,000. It is assumed that the revenue generated from the sale of the biomass products is used to invest towards additional capital requirements. The following table shows the allocation of the investment opportunities with the flow rates of each product for the first time period.

| Table 14: | FCI Allocation and I | Mass Flow Rate of <b>N</b> | Iain Product for [ | <b>Fime Period 2005-2007</b> |
|-----------|----------------------|----------------------------|--------------------|------------------------------|
|           | (                    |                            |                    |                              |

| Chemical       | FCI (MM \$) | Mass Flow Rate<br>(MM lbm/2 year) |
|----------------|-------------|-----------------------------------|
| Succinic Acid  | 41.3        | 74                                |
| Ethanol        | 32.6        | 78                                |
| Propionic Acid | 7.2         | 22                                |
| Fumaric Acid   | 2.0         | 5                                 |

The following block diagram shows the chemicals produced, amount of biomass used in the reaction, and main product flow rate for the plant for the initial time period.



Figure 23: Block Diagram for Biomass Production for Time Period 2005-2007

As illustrated in the flow diagram above, the majority of the capital will be invested in the production of succinic acid and ethanol for the initial time period. In addition to the production of these chemicals, the plant will also produce propionic acid and fumaric acid, but in smaller quantities. This is because the demand and market price are less for these chemicals compared to that of succinic acid and ethanol.

#### **5.2 Expansion Opportunities**

Throughout the lifetime of the process, expansion opportunities that would increase the net present value of the plant were considered. The evaluation for expansion was considered for each two year interval, with the production increase occurring in the first year of the period. The expansion can either include the addition to the existing processes of the plant or the construction of a new biorefining process. Below states the expansion requirements for each period that increases the net present value.

#### 5.2.1 Expansion Opportunity 1 (2007-2009)

Based on the initial design parameters, the plant was evaluated for expansions opportunities for each time interval of 2 years. For this evaluation, it was determined if an increase in plant capacity would increase the net present value of the project by capitalizing on the increase of market demands. In addition to the increase of market demands, more capital is available from the revenue generated from the sales of the chemicals produced. The following table shows the allocation of the investment opportunities with the flow rates of each product for the time period.

| Chemical FCI (MM \$) |      | Increase of Mass Flow<br>Rate (MM lbm/2 year) |
|----------------------|------|-----------------------------------------------|
| Succinic Acid        | 5.1  | 9.2                                           |
| Ethanol              | 5.3  | 12.6                                          |
| Propionic Acid       | 0.3  | 0.9                                           |
| Fumaric Acid         | 0.05 | 0.1                                           |

 Table 15:
 FCI Allocation and Mass Flow Rate of Main Product for Time Period 2007-2009

The flow diagram of the main reactant and product for time period 2007-2009 are given in the figure below:



Figure 24: Block Diagram for Biomass Production for Time Period 2007-2009

For the first expansion period, all capital investment will be used to expand on the current processes. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid.

#### 5.2.2 Expansion Opportunity 2 (2009-2011)

For the second expansion period, there was not an increase in the capacity of the plant. Therefore there was no additional fixed capital investment required for the addition of capacity increases.

#### 5.2.3 Expansion Opportunity 3 (2011-2013)

For the third expansion period, revenue generated was used to increase the capacity of the plant. For this time period, more equipment was added to the existing process to increase the product flow rates for all of the current chemicals being produced. The following table shows the fixed capital investment requirements and the increase in the product flow rate.

| Chemical       | FCI (MM \$) | Increase of Mass Flow<br>Rate (MM lbm/2 year) |
|----------------|-------------|-----------------------------------------------|
| Succinic Acid  | 5.7         | 10.2                                          |
| Ethanol        | 6.1         | 14.5                                          |
| Propionic Acid | 0.3         | 0.7                                           |
| Fumaric Acid   | 0.05        | 0.1                                           |

 Table 16:
 FCI Allocation and Mass Flow Rate of Main Product for Time Period 2011-2013

The flow diagram of the main reactant and product for time period 2011-2013 are given in the figure below:



Figure 25: Block Diagram for Biomass Production for Time Period 2011-2013

For the third expansion period, all capital investment will be used to expand on all of the current processes. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid.

#### 5.2.4 Expansion Opportunity 4 (2013-2015)

In the fourth expansion period, additions to the plant increased the mass flow rate of all produced currently produced by the plant. This increase in production required a fixed capital investment, which was supplied by the revenue generated from plant production. The following table shows the fixed capital investment requirements and the increase in the product flow rate for the time period.

| Chemical       | FCI (MM \$) | Increase of Mass Flow<br>Rate (MM lbm/2 year) |
|----------------|-------------|-----------------------------------------------|
| Succinic Acid  | 6.5         | 11.6                                          |
| Ethanol        | 7.2         | 17.0                                          |
| Propionic Acid | 0.2         | 0.9                                           |
| Fumaric Acid   | 0.09        | 0.3                                           |

Table 17: FCI Allocation and Mass Flow Rate of Main Product for Time Period 2013-2015

The flow diagram of the main reactant and product for time period 2013-2015 are given in the figure below:



Figure 26: Block Diagram for Biomass Production for Time Period 2013-2015

For the fourth expansion period, all capital investment will be used to expand on all of the current processes. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid.

#### 5.2.5 Expansion Opportunity 5 (2015-2017)

In the fifth expansion period, the expansion of the production of fumaric acid halted. This in returned allowed for the increase of production of the remaining chemicals. The following table shows the fixed capital investment requirements and the increase in the product flow rate for the time period.

| Glucose |       |      |    |     |   |  |
|---------|-------|------|----|-----|---|--|
| ~       | 4-101 | ANDE | 41 | 0.1 | _ |  |

| Chemical       | FCI (MM \$) | Increase of Mass Flow<br>Rate (MM lbm/2 year) |
|----------------|-------------|-----------------------------------------------|
| Succinic Acid  | 7.2         | 12.8                                          |
| Ethanol        | 8.2         | 19.6                                          |
| Propionic Acid | 0.3         | <sup>1.0</sup> Glucose                        |
| Fumaric Acid   | 0.0         | 0 <mark>:965 x 10<sup>€</sup> lb</mark>       |

#### Table 18: FCI Allocation and Mass Flow Rate of Main Product for 17 intelligible 2015-2017

Succi Prod

Ethanol I

The flow diagram of the main reactant and product for time period 2015-2017 are given in the figure below:



For the fifth expansion period, all capital investment will be used to expand on current processes. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid, while the production of fumaric acid halted.  $424 \times 10^{6}$  lb<sub>r</sub> Ethanol

#### 5.2.6 Expansion Opportunity 6 (2017-2019)

In the sixth expansion period, the production of all chemicals beside fumaric acid increased. The capital requirements for this expansion were fugged from revenue generated. The following table shows the fixed capital investment requirements and the increase in the product flow rate for the time period.

| • | Ter Anocation and Mass Flow Rate of Main Froudet for Thire Ferrod |             |                                               |  |  |
|---|-------------------------------------------------------------------|-------------|-----------------------------------------------|--|--|
|   | Chemical                                                          | FCI (MM \$) | Increase of Mass Flow<br>Rate (MM lbm/2 year) |  |  |
|   | Succinic Acid                                                     | 8.1         | 14.5Glucose                                   |  |  |
|   | Ethanol                                                           | 9.7         | 2317 x 10 <sup>€</sup> lb <sub>m</sub>        |  |  |
|   | Propionic Acid                                                    | 0.3         | 1.0                                           |  |  |
|   | Fumaric Acid                                                      | 0.0         | 0.0                                           |  |  |

 Table 19:
 FCI Allocation and Mass Flow Rate of Main Product for Time Period 2017-2019

The flow diagram of the main reactant and product for time period 2017-2019 are given in the figure below:

Propio Prod

Fuma Prod



Figure 28: Block Diagram for Biomass Production for Time Period 2017-2019

For the sixth expansion period, all capital investment will be useduce processes. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid, while the production of fumaric acid did not increase.

#### 5.2.7 Expansion Opportunity 7 (2019-2021)

Glucose

In the seventh expansion period, the production of fumaric acidestined remained constant, while the production of all other chemicals increased. The capital requirements for this expansion were funded from revenue generated. The following table shows the fixed capital investment requirements and the increase in the product flow rate for the time period.

| <b>J</b> : | FCI Anocation and Mass Flow Rate of Mani Floduct 1017 And Action 27 |             |                                               |  |  |  |  |
|------------|---------------------------------------------------------------------|-------------|-----------------------------------------------|--|--|--|--|
|            | Chemical                                                            | FCI (MM \$) | Increase of Mass Flow<br>Rate (MM lbm/2 year) |  |  |  |  |
|            | Succinic Acid                                                       | 9.2         | 16.4                                          |  |  |  |  |
|            | Ethanol                                                             | 11.1        | 26.5                                          |  |  |  |  |
|            | Propionic Acid                                                      | 0.3         | 1.0                                           |  |  |  |  |
|            | Fumaric Acid                                                        | 0.0         | 0.0                                           |  |  |  |  |

Glucose Table 20: FCI Allocation and Mass Flow Rate of Main Product for Figne Reniod 2019-2021

The flow diagram of the main reactant and product for time period 2019-2021 are given in the figure below:



### Propio Prod

Succi

Prod

Fuma Prod Figure 29: Block Diagram for Biomass Production for Time Period 2019-2021

For the sixth expansion period, all capital investment will be used to expand on current processes. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid, while the production of fumaric acid did not increase.

#### 5.2.8 Expansion Opportunity 8 (2021-2023)

In the eighth expansion period, the production of fumaric acid stilled remained constant, while the production of all other chemicals increased. The capital requirements for this expansion were funded from revenue generated from prior sales. The following table shows the fixed capital investment requirements and the increase in the product flow rate for the time period.

| Chemical       | FCI (MM \$) | Increase of Mass Flow<br>Rate (MM lbm/2 year) |
|----------------|-------------|-----------------------------------------------|
| Succinic Acid  | 10.3        | 18.4                                          |
| Ethanol        | 13.0        | 31.0                                          |
| Propionic Acid | 0.3         | 1.0                                           |
| Fumaric Acid   | 0.0         | 0.0                                           |

 Table 21:
 FCI Allocation and Mass Flow Rate of Main Product for Time Period 2021-2023

The flow diagram of the main reactant and product for time period 2021-2023 are given in the figure below:



Figure 30: Block Diagram for Biomass Production for Time Period 2021-2023

For the eighth expansion period, all capital investment will be used to expand on all current processes besides fumaric acid. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid.

#### 5.2.9 Expansion Opportunity 9 (2023-2025)

In the ninth and final expansion period, the production of fumaric acid stilled remained constant, while the production of all other chemicals increased. The capital requirements for this expansion were funded from revenue generated from prior sales. The following

table shows the fixed capital investment requirements and the increase in the product flow rate for the time period.

| Chemical       | FCI (MM \$) | Increase of Mass Flow<br>Rate (MM lbm/2 year) |
|----------------|-------------|-----------------------------------------------|
| Succinic Acid  | 11.5        | 20.6                                          |
| Ethanol        | 15.1        | 36.0                                          |
| Propionic Acid | 0.4         | 1.2                                           |
| Fumaric Acid   | 0.0         | 0.0                                           |

 Table 22:
 FCI Allocation and Mass Flow Rate of Main Product for Time Period 2023-2025

The flow diagram of the main reactant and product for time period 2023-2025 are given in the figure below:



Figure 31: Block Diagram for Biomass Production for Time Period 2023-2025

For the eighth expansion period, all capital investment will be used to expand on all current processes besides fumaric acid. Based on the figures above, the majority of this capital will be used to expand on the production of ethanol and succinic acid.

#### 5.3 Deterministic Mathematical Model Overview

Based on the initial capital investment of \$150,000,000, the net present value of the biorefining plant is projected to be \$280,000,000. It was determined the optimal location for this plant would be in Dubuque, Iowa. This biorefining plant is designed to produce four of the possible seven potential fermentation products, succinic acid, ethanol, propionic acid, and fumaric acid. The product flow rate of each process based on the total capacity of the plant is illustrated in the figure below:

Glucose 666 x 10<sup>6</sup> lb<sub>m</sub> Succii Prod

Ethanol I

Glucose 86 x 10<sup>6</sup> lb<sub>m</sub>

> Fuma Prod

Propio

Prod

Glucose 17 x 10<sup>e</sup> lb<sub>m</sub>



Figure 32: Product Flow Rate (MM lb<sub>m</sub>) Distribution for Lifespan of Project

To achieve the above flow rates, there was a fixed capital investment associated with it. The total initial capital available was only \$150,000,000, but once revenue was generated, this monetary sum was used to invest in expansion opportunities for the plant. The total fixed capital requirements for the production of each chemical is given in the figure below, as well as the percent distribution for each process.



Figure 33: Fixed Capital Distribution for Lifespan of Project

Based on the figures above, the majority of product produced from the biorefining plant will be ethanol and succinic acid. They were produced in the greatest quantity, as well as having the greatest allocation of the fixed capital investment. This was because the market prices for these chemicals are greater than that of fumaric and propionic acid. Even though the capital investment for fumaric and propionic acid seem relatively insignificant, there was excess capital available to make the investment profitable.

In addition to the consideration of different possible fermentation products, different markets throughout the United States were considered. These markets were broken down by three regions: West, Central, and East. Because the demand and the market prices for the chemicals produced varied between the regions, each region varied in the amount of

the product transported to their region. The figure below illustrated the distribution of the amount of the products sold by region.



Figure 34: Market Region Distribution of Sold Chemicals (MM lb<sub>m</sub>) for Lifespan of Project

As revenue was being generated, this inflow of cash was used to invest in expansion opportunities for the biorefining plant. The following figure illustrates the increases in production due to these expansion opportunities.



Figure 35: Biomass Production Increase for Lifespan of Project

#### 5.4 Stochastic Model Results

From the deterministic model, a stochastic model was developed which took into account the variation in the market prices for all raw materials and products sold. This model more accurately depicts the fluctuations of market prices, which will give a more realistic net present value. The scenarios for the two independent variables were generated in excel using a standard deviation of 10% of the mean price at the beginning of plant production and increased linearly to 40% at the end of the project life span. This is because prices in the distant future are much harder to predict than prices in the near future. All scenarios were generated around a mean value projected over the economic life span of the project.

The stochastic model determined that Dubuque, Iowa as the optimal plant location, which was the same as the deterministic model. With an initial capital investment of \$150,000,000, the net present value is expected to be \$321,000,000 with a return on investment of 10.5%. This is an increase of \$27,000,000 over the deterministic model.

#### 5.4.1 Uncertainty Model

The stochastic model was developed based upon 20 different scenarios. When entering the scenarios into the mathematical model, the scenarios are paired so that all possible scenarios would be covered. For example, one year the raw material price might be high when the selling price of the chemical is very low and vise versa. These scenarios were used to determine the probability and the distribution of the net present value considering the different possibilities. The first chart developed was the uncertainty curve, as shown below.



Figure 36: Uncertainty Curves of Net Present Values for Different Scenarios

From these results the best scenario is chosen, which is called the upper bound. The upper bound represents the best case scenario in order to maximize the NPV of the project. The above figures illustrates that the plant will be profitable based on the positive net present value at all probabilities. The range of the net present value is from \$260,000,000 to \$380,000,000. The expected net present value using the uncertainty curve is determined using the mean curve considering all scenarios. This mean curve is given in the figure below, with the distribution of each given in the risk histogram.



Figure 37: Risk Histogram for Stochastic Model

Using the risk histogram from above, the highest area of distribution is the most probable net present value, which is about \$321,000,000.

#### 6. Conclusion

The construction of the biorefining plant is expected to be profitable with a return on investment of 10.5%. With the initial capital investment of \$150,000,000, the net present value is expected to be \$321,000,000. Since the project is expected to be profitable, it is recommended that the plant start its initial construction in 2005 at Dubuque, Iowa. The agricultural source for the biorefining process is corn, which is abundant in the region of the plant. The chemicals produced at this plant will be succinic acid, ethanol, propionic acid, and fumaric acid. The main chemicals produced will be succinic acid and ethanol, which will contribute to 95% of the total 260 million pounds produced throughout the 20 year life cycle of the plant. By implementing this plant, with expansion throughout the life of the project, it will be one of the largest contributors in the biorefining industry.

#### 7.0 Reference:

- 1. http://www.avacltd.com/NarineProof.pdf
- 2. http://www.the-innovation-group.com/ChemProfiles
- 3. http://www.oit.doe.gov/chemicals/factsheets/succinic.pdf
- 4. www.findarticles.com
- 5. http://www.chemindustry.com/chemicals/index.asp?=search
- "Enhanced Production of Succinic Acid" by CYNTHIA SANVILLE MILLARD, YUN-PENG CHAO, JAMES C. LIAO, AND MARK I. DONNELLY
- 7. "Lactic Acid Production in a Stirred-Tank Fermentor
- 8. www.es.anl.gov
- 9. www.fgsc.net/asilomar/citric.html
- 10. scifun.chem.wisc.edu/chemweek/AceticAcid
- 11. "Propionic Acid Production by batch fermentation" by STEVEN A. WOSKOWt AND BONITA A. GLATZ
- 12. "Simultaneous Production and Recovery of Fumaric Acid" by NINGJUN CAO, JIANXIN DU, C. S. GONG, AND G. T. TSAO
- 13. ntri.tamuk.edu/fplc/ion.html
- 14. www.matche.com
- 15. www.mcmaster.com
- 16. Separation Process Principles by Seader and Henley
- 17. An addition/improvement on Ethyl Lactate GAMS model.
- 18. www.qlg.org/pub/act\_acp/ethanol/feasibility.htm
- 19. SuperPro Simulation: See Appendix
- Source: U.S. DOE Energy Information Administration, Electric Power Monthly Annual, August, 2001.
- 21. http://www.pnl.gov/biobased/docs/encyclopedia.pdf
- 22. http://www.bankrate.com/goocalh/itax/state/state\_tax\_home\_text.asp

## Appendix

Appendix A – All the fermentation and process economics Acetic acid process simulations simulation



E

V-5

Propionic acid process simulations simumation



# Process Economics for each processes Acetic acid –

| ANNUAL RAW I                          | MATERIAL                | COSTS A    | ND PRODUC    | TS VALUES            | S         | ANNUAL OPER                           | ATING LAB     | OR COSTS      | 5          |
|---------------------------------------|-------------------------|------------|--------------|----------------------|-----------|---------------------------------------|---------------|---------------|------------|
| Process Identifie                     | r: Illustratio          | on 101     |              |                      |           | Process Identifier: Illustration 101  |               |               |            |
| Required user inj                     | put                     | Notes & ci | omments      |                      |           | Required user input Notes &           |               | Notes & co    | omments    |
| Default, may be                       | Default, may be changed |            |              |                      |           | Default, may be                       | changed       |               |            |
| RESULT                                |                         |            |              |                      |           | RESULT                                |               |               |            |
| Products, C                           | Coproducts              | and Bypr   | oducts       |                      |           |                                       | Operating     | Labor         |            |
| Name of                               | Price,                  | Annual     | Annual       |                      |           | Number of                             | Shifts per    | Operator      | Annual     |
| Material                              | \$/kg                   | Amount,    | value of     |                      |           | operators per                         | day**         | rate, \$/h *  | operating  |
|                                       |                         | million    | product,     |                      |           | shift*                                |               |               | labor      |
|                                       |                         | kg/y       | million \$/y |                      |           |                                       |               |               | cost,      |
| Main                                  | 1.19                    | 17.100     | 20.35        |                      |           | 5                                     | 3             | 30.5          | 1.336      |
| byproduct                             | 0.00                    | 12.000     | 0.00         |                      |           | *See Tables 6-13                      | 3 and Fig. 6  | -9.           |            |
|                                       |                         |            | 0.00         |                      |           | **Default = 3 for                     | continuous    | process.      |            |
|                                       |                         |            | 0.00         |                      |           | Enter appropriate                     | e value for b | atch operat   | ion.       |
|                                       |                         |            | 0.00         |                      |           | #To obtain current, local value, ente |               | ie, enter (la | test local |
|                                       |                         |            | 0.00         |                      |           | ENR skilled labor index)/6067 =       |               |               | 1          |
| Total annual value of products = 20.3 |                         |            | 20.35        | Sent to <b>'Ev</b> a | aluation' |                                       |               |               |            |
|                                       |                         |            |              | and Year-0           | ) \$'     |                                       |               |               |            |
|                                       |                         |            |              |                      |           |                                       |               |               |            |
|                                       | Raw Mate                | erials     |              |                      |           |                                       |               |               |            |
| Name of                               | Price,                  | Annual     | Annual raw   |                      |           |                                       |               |               |            |
| Material                              | \$/kg                   | Amount,    | materials    |                      |           |                                       |               |               |            |
|                                       |                         | million    | cost,        |                      |           |                                       |               |               |            |
|                                       |                         | kg/y       | million \$/y |                      |           |                                       |               |               |            |
| water                                 | 0.00                    | 325.000    | 0.16         |                      |           |                                       |               |               |            |
| salt                                  | 0.13                    | 3.000      | 0.39         |                      |           |                                       |               |               |            |
| ammonia                               | 0.09                    | 1.500      | 0.14         |                      |           |                                       |               |               |            |
| ethyl lactate                         | 0.54                    | 0.120      | 0.06         |                      |           |                                       |               |               |            |
| resin(L)                              | 2.00                    | 0.050      | 0.10         |                      |           |                                       |               |               |            |
|                                       |                         |            | 0.00         |                      |           |                                       |               |               |            |
| Total annual cos                      | st of raw m             | aterials = | 0.85         | Sent to she          | et        |                                       |               |               |            |
|                                       |                         |            |              | 'Annual TF           | °C'       |                                       |               |               |            |
|                                       |                         |            |              |                      |           |                                       |               |               |            |
|                                       |                         |            |              |                      |           |                                       |               |               |            |
|                                       |                         |            |              |                      |           |                                       |               |               |            |

## **TCI for the acetic acid** – It is obtained by the Peters and Timmerhaus spreadsheetProject Identifier: Illustration 101Calculated

values, million \$

Project Identifier: Illustration 101

| Direct Costs                        |        |  |  |  |  |
|-------------------------------------|--------|--|--|--|--|
| Purchased equipment, E'             | 11.300 |  |  |  |  |
| Delivery, fraction of E'            | 1.130  |  |  |  |  |
| Subtotal: delivered equipment       | 12.430 |  |  |  |  |
| Purchased equipment installation    | 5.842  |  |  |  |  |
| Instrumentation&Controls(installed) | 1.865  |  |  |  |  |
| Piping (installed)                  | 4.972  |  |  |  |  |
| Electrical systems (installed)      | 0.525  |  |  |  |  |
| Buildings (including services)      | 1.380  |  |  |  |  |
| Yard improvements                   | 0.125  |  |  |  |  |
| Service facilities (installed)      | 4.351  |  |  |  |  |
| Total direct costs                  | 31.489 |  |  |  |  |
| Indirect Costs                      |        |  |  |  |  |
| Engineering and supervision         | 2.921  |  |  |  |  |
| Construction expenses               | 2.486  |  |  |  |  |
| Legal expenses                      | 0.497  |  |  |  |  |
| Contractor's fee                    | 0.012  |  |  |  |  |
| Contingency                         | 0.622  |  |  |  |  |
| Total indirect costs                | 6.538  |  |  |  |  |
| Fixed capital investment<br>(FCI)   | 38.027 |  |  |  |  |
| Working capital (WC)                | 11.063 |  |  |  |  |
| Total capital investment<br>(TCI)   | 49.090 |  |  |  |  |

| Capacity                                                        | 30                                       | 10 <sup>6</sup> kg per year |                                |                       |  |
|-----------------------------------------------------------------|------------------------------------------|-----------------------------|--------------------------------|-----------------------|--|
| Fixed Capital Investment, FCI                                   | 51.200                                   | million \$                  |                                |                       |  |
| Item                                                            | Default<br>factor, user<br>may<br>change | Basis                       | Basis<br>cost,<br>million \$/y | Cost,<br>million \$/y |  |
| Raw materials                                                   |                                          |                             |                                | 0.852                 |  |
| Operating labor                                                 |                                          |                             |                                | 1.336                 |  |
| Operating supervision                                           | 0.05                                     | of operating labor          | 1.336                          | 0.067                 |  |
| Utilities                                                       |                                          |                             |                                | 0.990                 |  |
| Maintenance and repairs                                         | 0.06                                     | ofFCI                       | 51.200                         | 3.072                 |  |
| Operating supplies                                              | 0.15                                     | of maintenance &            | 3.072                          | 0.461                 |  |
| Laboratory charges                                              | 0.03                                     | of operating labor          | 1.336                          | 0.040                 |  |
| Royalties (if not on lump-sum basis)                            | 0.01                                     | of <i>c</i> o               | 13.260                         | 0.133                 |  |
| Catalysts and solvents                                          | 0                                        |                             |                                | 0.000                 |  |
| Varia                                                           | able cost =                              | 6.950                       |                                |                       |  |
| Taxes (property)                                                | 0.02                                     | ofFCI                       | 51.200                         | 1.024                 |  |
| Financing (interest)                                            | 0                                        | ofFCI                       | 51.200                         | 0.000                 |  |
| Insurance                                                       | 0.01                                     | ofFCI                       | 51.200                         | 0.512                 |  |
| Rent                                                            | 0                                        | ofFCI                       | 51.200                         | 0.000                 |  |
| Depreciation                                                    | Calculate                                | d separately                |                                |                       |  |
|                                                                 |                                          | Fixed Ch                    | arges =                        | 1.536                 |  |
| Plant overhead, general                                         | 0.6                                      | of labor, supervisi         | 4.475                          | 2.685                 |  |
|                                                                 |                                          | Plant Ove                   | rhead =                        | 2.685                 |  |
|                                                                 |                                          | Manufacturing               | g cost =                       | 11.171                |  |
| Administration                                                  | 0.2                                      | of labor, supervisi         | 4.475                          | 0.895                 |  |
| Distribution & selling                                          | 0.05                                     | of <i>c</i> o               | 13.260                         | 0.663                 |  |
| Research & Development                                          | 0.04                                     | of <i>c</i> ,               | 13.260                         | 0.530                 |  |
|                                                                 |                                          | General Ex <sub>j</sub>     | pense =                        | 2.088                 |  |
| TOTAL PRODUCT COST <u>WITHOUT</u> <u>DEPRECIATION</u> = $c_o$ = |                                          |                             |                                |                       |  |

Annual product cost for the acetic acid –

| ANNUAL RAW        | MATERIAL       | COSTS A    | ND PRODUC    | TS VALUES                                 | ANNUAL OPER                          | ATING LAB     | OR COSTS         | 5         |
|-------------------|----------------|------------|--------------|-------------------------------------------|--------------------------------------|---------------|------------------|-----------|
| Process Identifie | r: Illustratio | on 101     |              |                                           | Process Identifier: Illustration 101 |               |                  |           |
| Required user in  | put            | Notes & c  | omments      |                                           | Required user in                     | put           | Notes & comments |           |
| Default, may be   | changed        |            |              |                                           | Default, may be changed              |               |                  |           |
| RESULT            |                |            |              | RESULT                                    |                                      |               |                  |           |
| Products, C       | Coproducts     | s and Bypr | oducts       |                                           |                                      | Operating I   | Labor            |           |
| Name of           | Price,         | Annual     | Annual       |                                           | Number of                            | Shifts per    | Operator         | Annual    |
| Material          | \$/kg          | Amount,    | value of     |                                           | operators per                        | day**         | rate, \$/h #     | operating |
|                   |                | million    | product,     |                                           | shift*                               |               |                  | labor     |
|                   |                | kg/y       | million \$/y |                                           |                                      |               |                  | cost,     |
| Main              | 4.40           | 14.770     | 64.99        |                                           | 5                                    | 3             | 30.5             | 1.336     |
| byproduct         | 0.00           | 12.000     | 0.00         |                                           | *See Tables 6-13                     | 3 and Fig. 6  | -9.              |           |
|                   |                |            | 0.00         |                                           | **Default = 3 for                    | continuous    | process.         |           |
|                   |                | 0.00       |              | Enter appropriate value for batch opera   |                                      | atch operat   | ion.             |           |
|                   |                | 0.00       |              | *To obtain current, local value, enter (l |                                      | ie, enter (la | test local       |           |
|                   |                |            | 0.00         |                                           | ENR skilled labor index)/6067 =      |               |                  | 1         |
| Total annual      | value of pro   | ducts =    | 64.99        | Sent to 'Evaluation'                      |                                      |               |                  |           |
|                   |                |            |              | and Year 0 \$                             |                                      |               |                  |           |
|                   |                |            |              |                                           |                                      |               |                  |           |
|                   | Raw Mate       | erials     |              |                                           |                                      |               |                  |           |
| Name of           | Price,         | Annual     | Annual raw   |                                           |                                      |               |                  |           |
| Material          | \$/kg          | Amount,    | materials    |                                           |                                      |               |                  |           |
|                   |                | million    | cost,        |                                           |                                      |               |                  |           |
|                   |                | kg/y       | million \$/y |                                           |                                      |               |                  |           |
| water             | 0.00           | 361.000    | 0.18         |                                           |                                      |               |                  |           |
| salt              | 0.13           | 2.780      | 0.36         |                                           |                                      |               |                  |           |
| ammonia           | 0.09           | 14.000     | 1.26         |                                           |                                      |               |                  |           |
| H2SO4             | 0.01           | 158.000    | 1.58         |                                           |                                      |               |                  |           |
| resin(L)          | 2.00           | 0.050      | 0.10         |                                           |                                      |               |                  |           |
| CaOH              | 0.05           | 184.000    | 9.20         |                                           |                                      |               |                  |           |
| Total annual co   | st of raw m    | aterials = | 12.68        | Sent to sheet                             |                                      |               |                  |           |
|                   |                |            |              | 'Annual TPC'                              |                                      |               |                  |           |

#### Succinic acid raw materials -

#### TCI for succinic acid -ESTIMATION OF CAPITAL INVESTMENT BY PERCENTAGE OF DELIVERED EQUIPMENT METHOD

(See Table 6-9)

The fractions in the cells below are approximations applicable to typical chemical processing plants. These values may differ depending on many factors such as location, process type, etc. Required user input Result Required, from a linked sheet or entered manually Project Identifier: Illustration 101 Calculated

values, million \$

| Direct Costs             |        |
|--------------------------|--------|
| Purchased equipment, E'  | 16.300 |
| Delivery, fraction of E' | 1.630  |

| Subtotal: delivered equipment                                                                                | 17.930                           |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|
| Purchased equipment installation                                                                             | 8.427                            |
| Instrumentation&Controls(installed)                                                                          | 2.690                            |
| Piping (installed)                                                                                           | 7.172                            |
| Electrical systems (installed)                                                                               | 1.972                            |
| Buildings (including services)                                                                               | 3.227                            |
| Yard improvements                                                                                            | 1.793                            |
| Service facilities (installed)                                                                               | 6.276                            |
| Total direct costs                                                                                           | 49.487                           |
| Indirect Costs<br>Engineering and supervision<br>Construction expenses<br>Legal expenses<br>Contractor's fee | 5.917<br>5.379<br>0.717<br>3.227 |
| Contingency                                                                                                  | 3.586                            |
| Total indirect costs                                                                                         | 18.827                           |
| Fixed capital investment<br>(FCI)                                                                            | 68.313                           |
| Working capital (WC)                                                                                         | 15.958                           |
|                                                                                                              |                                  |

Total capital investment (TCI) 84.271

| Capacity                                                        | 30                                       | 10 <sup>6</sup> kg per year |                                |                       |  |  |
|-----------------------------------------------------------------|------------------------------------------|-----------------------------|--------------------------------|-----------------------|--|--|
| Fixed Capital Investment, FCI                                   | 73.855                                   | million \$                  |                                |                       |  |  |
| Item                                                            | Default<br>factor, user<br>may<br>change | Basis                       | Basis<br>cost,<br>million \$/y | Cost,<br>million \$/y |  |  |
| Raw materials                                                   |                                          |                             |                                | 12.682                |  |  |
| Operating labor                                                 |                                          |                             |                                | 1.336                 |  |  |
| Operating supervision                                           | 0.05                                     | of operating labor          | 1.336                          | 0.067                 |  |  |
| Utilities                                                       |                                          |                             |                                | 0.990                 |  |  |
| Maintenance and repairs                                         | 0.06                                     | ofFCI                       | 73.855                         | 4.431                 |  |  |
| Operating supplies                                              | 0.15                                     | of maintenance &            | 4.431                          | 0.665                 |  |  |
| Laboratory charges                                              | 0.03                                     | of operating labor          | 1.336                          | 0.040                 |  |  |
| Royalties (if not on lump-sum basis)                            | 0.01                                     | of <i>c</i> o               | 30.104                         | 0.301                 |  |  |
| Catalysts and solvents                                          | 0                                        |                             |                                | 0.000                 |  |  |
| Varia                                                           | able cost=                               | -<br>-                      |                                | 20.512                |  |  |
| Taxes (property)                                                | 0.02                                     | ofFCI                       | 73.855                         | 1.477                 |  |  |
| Financing (interest)                                            | 0                                        | ofFCI                       | 73.855                         | 0.000                 |  |  |
| Insurance                                                       | 0.01                                     | ofFCI                       | 73.855                         | 0.739                 |  |  |
| Rent                                                            | 0                                        | ofFCI                       | 73.855                         | 0.000                 |  |  |
| Depreciation                                                    | Calculate                                | d separately                |                                |                       |  |  |
|                                                                 |                                          | Fixed Ch                    | arges =                        | 2.216                 |  |  |
| Plant overhead, general                                         | 0.6                                      | of labor, supervisi         | 5.834                          | 3.500                 |  |  |
|                                                                 |                                          | Plant Ove                   | rhead =                        | 3.500                 |  |  |
|                                                                 |                                          | Manufacturing               | g cost =                       | 26.228                |  |  |
| Administration                                                  | 0.2                                      | of labor, supervisi         | 5.834                          | 1.167                 |  |  |
| Distribution & selling                                          | 0.05                                     | of <i>c</i> ,               | 30.104                         | 1.505                 |  |  |
| Research & Development                                          | 0.04                                     | of <i>c</i> ,               | 30.104                         | 1.204                 |  |  |
|                                                                 |                                          | General Ex                  | pense =                        | 3.876                 |  |  |
| TOTAL PRODUCT COST <u>WITHOUT</u> <u>DEPRECIATION</u> = $c_o$ = |                                          |                             |                                |                       |  |  |

### Annual Product cost for succinic acid -

#### Propionic acid –

| ANNUAL RAW N                                                                            | IATERIAL                                                    | COSTS AN                                                                                            | ND PRODUC                                                                                                | TS VALUES                                  | ANNUAL OPER                           | ATING LAB        | OR COSTS     | 5         |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|------------------|--------------|-----------|
| Process Identifier                                                                      | : Illustratio                                               | on 101                                                                                              |                                                                                                          |                                            | Process Identifier: Illustration 101  |                  |              |           |
| Required user inp                                                                       | ut                                                          | Notes & co                                                                                          | omments                                                                                                  | Required user input                        |                                       | Notes & comments |              |           |
| Default, may be c                                                                       | hanged                                                      |                                                                                                     |                                                                                                          |                                            | Default, may be                       | changed          |              |           |
| RESULT                                                                                  |                                                             |                                                                                                     |                                                                                                          |                                            | RESULT                                |                  |              |           |
| Products, Coproducts and Byprodu                                                        |                                                             |                                                                                                     | oducts                                                                                                   |                                            |                                       | Operating I      | Labor        |           |
| Name of                                                                                 | Price,                                                      | Annual                                                                                              | Annual                                                                                                   |                                            | Number of                             | Shifts per       | Operator     | Annual    |
| Material                                                                                | \$/kg                                                       | Amount,                                                                                             | value of                                                                                                 |                                            | operators per                         | day**            | rate, \$/h # | operating |
|                                                                                         |                                                             | million                                                                                             | product,                                                                                                 |                                            | shift*                                |                  |              | labor     |
|                                                                                         |                                                             | kg/y                                                                                                | million \$/y                                                                                             |                                            |                                       |                  |              | cost,     |
| Main                                                                                    | 1.25                                                        | 15.500                                                                                              | 19.38                                                                                                    |                                            | 5                                     | 3                | 30.5         | 1.336     |
| byproduct                                                                               | 0.00                                                        | 12.000                                                                                              | 0.00                                                                                                     |                                            | *See Tables 6-13                      | 3 and Fig. 6     | -9.          |           |
|                                                                                         |                                                             |                                                                                                     | 0.00                                                                                                     |                                            | **Default = 3 for continuous process. |                  | process.     |           |
|                                                                                         |                                                             | 0.00                                                                                                |                                                                                                          | Enter appropriate value for batch operat   |                                       |                  | ion.         |           |
|                                                                                         |                                                             | 0.00                                                                                                |                                                                                                          | *To obtain current, local value, enter (la |                                       |                  | test local   |           |
|                                                                                         |                                                             |                                                                                                     | 0.00                                                                                                     |                                            | ENR skilled labor index)/6067 =       |                  |              | 1         |
| Total annual v                                                                          | alue of pro                                                 | ducts =                                                                                             | 19.38                                                                                                    | Sent to 'Evaluation'                       | ·                                     |                  |              |           |
|                                                                                         |                                                             |                                                                                                     |                                                                                                          | and Year-0 \$                              |                                       |                  |              |           |
|                                                                                         |                                                             |                                                                                                     |                                                                                                          |                                            |                                       |                  |              |           |
|                                                                                         |                                                             |                                                                                                     |                                                                                                          |                                            |                                       |                  |              |           |
|                                                                                         | Raw Mate                                                    | erials                                                                                              |                                                                                                          |                                            |                                       |                  |              |           |
| Name of                                                                                 | Raw Mate<br>Price,                                          | e <b>rials</b><br>Annual                                                                            | Annual raw                                                                                               |                                            |                                       |                  |              |           |
| Name of<br>Material                                                                     | Raw Mate<br>Price,<br>\$/kg                                 | e <b>rials</b><br>Annual<br>Amount,                                                                 | Annual raw<br>materials                                                                                  |                                            |                                       |                  |              |           |
| Name of<br>Material                                                                     | Raw Mate<br>Price,<br>\$/kg                                 | e <b>rials</b><br>Annual<br>Amount,<br>million                                                      | Annual raw<br>materials<br>cost,                                                                         |                                            |                                       |                  |              |           |
| Name of<br>Material                                                                     | Raw Mate<br>Price,<br>\$/kg                                 | erials<br>Annual<br>Amount,<br>million<br>kg/y                                                      | Annual raw<br>materials<br>cost,<br>million \$/y                                                         |                                            |                                       |                  |              |           |
| Name of<br>Material<br>water                                                            | Raw Mate<br>Price,<br>\$/kg<br>0.00                         | erials<br>Annual<br>Amount,<br>million<br>kg/y<br>280.000                                           | Annual raw<br>materials<br>cost,<br>million \$/y<br>0.14                                                 |                                            |                                       |                  |              |           |
| Name of<br>Material<br>water<br>salt                                                    | Raw Mate<br>Price,<br>\$/kg<br>0.00<br>0.13                 | erials<br>Annual<br>Amount,<br>million<br>kg/y<br>280.000<br>2.900                                  | Annual raw<br>materials<br>cost,<br>million \$/y<br>0.14<br>0.38                                         |                                            |                                       |                  |              |           |
| Name of<br>Material<br>water<br>salt<br>ammonia                                         | Raw Mate<br>Price,<br>\$/kg<br>0.00<br>0.13<br>0.09         | erials<br>Annual<br>Amount,<br>million<br>kg/y<br>280.000<br>2.900<br>14.700                        | Annual raw<br>materials<br>cost,<br>million \$/y<br>0.14<br>0.38<br>1.32                                 |                                            |                                       |                  |              |           |
| Name of<br>Material<br>water<br>salt<br>ammonia<br>sodium hydroxide                     | Raw Mate<br>Price,<br>\$/kg<br>0.00<br>0.13<br>0.09<br>0.04 | erials<br>Annual<br>Amount,<br>million<br>kg/y<br>280.000<br>2.900<br>14.700<br>5.800               | Annual raw<br>materials<br>cost,<br>million \$/y<br>0.14<br>0.38<br>1.32<br>0.23                         |                                            |                                       |                  |              |           |
| Name of<br>Material<br>water<br>salt<br>ammonia<br>sodium hydroxide                     | Raw Mate<br>Price,<br>\$/kg<br>0.00<br>0.13<br>0.09<br>0.04 | erials<br>Annual<br>Amount,<br>million<br>kg/y<br>280.000<br>2.900<br>14.700<br>5.800               | Annual raw<br>materials<br>cost,<br>million \$/y<br>0.14<br>0.38<br>1.32<br>0.23<br>0.00                 |                                            |                                       |                  |              |           |
| Name of<br>Material<br>water<br>salt<br>ammonia<br>sodium hydroxide                     | Raw Mate<br>Price,<br>\$/kg<br>0.00<br>0.13<br>0.09<br>0.04 | erials<br>Annual<br>Amount,<br>million<br>kg/y<br>280.000<br>2.900<br>14.700<br>5.800               | Annual raw<br>materials<br>cost,<br>million \$/y<br>0.14<br>0.38<br>1.32<br>0.23<br>0.00<br>0.00         |                                            |                                       |                  |              |           |
| Name of<br>Material<br>water<br>salt<br>ammonia<br>sodium hydroxide<br>Total annual cos | Raw Mate<br>Price,<br>\$/kg<br>0.00<br>0.13<br>0.09<br>0.04 | erials<br>Annual<br>Amount,<br>million<br>kg/y<br>280.000<br>2.900<br>14.700<br>5.800<br>aterials = | Annual raw<br>materials<br>cost,<br>million \$/y<br>0.14<br>0.38<br>1.32<br>0.23<br>0.00<br>0.00<br>2.07 | Sent to sheet                              |                                       |                  |              |           |

#### TCI for propionic acid -

#### plants. These values may differ depending on many

| factors such as location, process                 | typ | e, etc.                       |
|---------------------------------------------------|-----|-------------------------------|
| Required user input                               |     | Result                        |
| Required, from a linked sheet or entered manually |     |                               |
| Project Identifier: Illustration 101              |     | Calculated values, million \$ |

#### **Direct Costs** Purchased equipment, E' 12.900 Delivery, fraction of E' 1.290 Subtotal: delivered equipment 14.190 Purchased equipment installation 6.669 Instrumentation&Controls(installed) 2.129 5.676 Piping (installed) Electrical systems (installed) 1.561 2.554 Buildings (including services)

| Yard improvements              | 1.419  |
|--------------------------------|--------|
| Service facilities (installed) | 4.967  |
| Total direct costs             | 39.164 |

| Indirect Costs                    |        |
|-----------------------------------|--------|
| Engineering and supervision       | 4.683  |
| Construction expenses             | 4.257  |
| Legal expenses                    | 0.568  |
| Contractor's fee                  | 2.554  |
| Contingency                       | 2.838  |
| Total indirect costs              | 14.900 |
|                                   |        |
| Fixed capital investment<br>(FCI) | 54.064 |
| Working capital (WC)              | 12.629 |
|                                   |        |

| Capacity                                                        | 30                                       | 10 <sup>6</sup> kg per year |                                |                       |
|-----------------------------------------------------------------|------------------------------------------|-----------------------------|--------------------------------|-----------------------|
| Fixed Capital Investment, FCI                                   | 58.450                                   | million \$                  |                                |                       |
| Item                                                            | Default<br>factor, user<br>may<br>change | Basis                       | Basis<br>cost,<br>million \$/y | Cost,<br>million \$/y |
| Raw materials                                                   |                                          |                             |                                | 2.072                 |
| Operating labor                                                 |                                          |                             |                                | 1.336                 |
| Operating supervision                                           | 0.05                                     | of operating labor          | 1.336                          | 0.067                 |
| Utilities                                                       |                                          |                             |                                | 0.990                 |
| Maintenance and repairs                                         | 0.06                                     | ofFCI                       | 58.450                         | 3.507                 |
| Operating supplies                                              | 0.15                                     | of maintenance &            | 3.507                          | 0.526                 |
| Laboratory charges                                              | 0.03                                     | of operating labor          | 1.336                          | 0.040                 |
| Royalties (if not on lump-sum basis)                            | 0.01                                     | of <i>c</i> o               | 15.799                         | 0.158                 |
| Catalysts and solvents                                          | 0                                        |                             |                                | 0.000                 |
| Variable cost =                                                 |                                          |                             | 8.696                          |                       |
| Taxes (property)                                                | 0.02                                     | ofFCI                       | 58.450                         | 1.169                 |
| Financing (interest)                                            | 0                                        | ofFCI                       | 58.450                         | 0.000                 |
| Insurance                                                       | 0.01                                     | ofFCI                       | 58.450                         | 0.584                 |
| Rent                                                            | 0                                        | ofFCI                       | 58.450                         | 0.000                 |
| Depreciation                                                    | Calculate                                | d separately                |                                |                       |
| Fixed Charges =                                                 |                                          |                             | 1.753                          |                       |
| Plant overhead, general                                         | 0.6                                      | of labor, supervisi         | 4.910                          | 2.946                 |
|                                                                 |                                          | Plant Ove                   | rhead =                        | 2.946                 |
| Manufacturing cost =                                            |                                          |                             |                                | 13.395                |
| Administration                                                  | 0.2                                      | of labor, supervisi         | 4.910                          | 0.982                 |
| Distribution & selling                                          | 0.05                                     | of <i>c</i> o               | 15.799                         | 0.790                 |
| Research & Development                                          | 0.04                                     | of <i>c</i> o               | 15.799                         | 0.632                 |
| General Expense =                                               |                                          |                             | 2.404                          |                       |
| TOTAL PRODUCT COST <u>WITHOUT</u> <u>DEPRECIATION</u> = $c_o$ = |                                          |                             | 15.799                         |                       |

Annual Product cost for propionic acid –

| Propionic acid    |       |           |           |
|-------------------|-------|-----------|-----------|
|                   |       | Size per  |           |
|                   | Units | unit      | Cost (\$) |
| Blending/Storage  | 3     | 21000 gal | 110000    |
| Sterilizer        | 3     | 100m3/hr  | 220000    |
| Air Filtration -1 | 9     | 4m3/s     | 25000     |
| Compressor        | 3     | 1300 kW   | 250000    |
| Air Filtration -2 | 5     | 8m3/s     | 15000     |
| Fermentor         | 5     | 350000 L  | 1200000   |
| Blending/Storage  |       |           |           |
| 2                 | 19    | 80000 L   | 110000    |
| Ion Exchanger     | 15    | 7100 L    | 85125     |
| Reaction Vessel   | 3     | 35500 L   | 374000    |
| Crystallizer      | 1     | 40000 L   | 410000    |

Appendix B – Equiment costs and operating cost for each process Propionic acid –

Operating cost -



Succinic acid – Equiment cost –

| Succinic Acid       |       |           |         |
|---------------------|-------|-----------|---------|
|                     |       | Size per  |         |
| Costs of Equipment  | Units | Unit      | Cost    |
| Blending/Storage    | 3     | 21000 gal | 110000  |
| Sterilizer          | 4     | 100m3/hr  | 220000  |
| Air Filtration -1   | 8     | 4m3/s     | 25000   |
| Compressor          | 2     | 2350 kW   | 275125  |
| Air Filtration -2   | 6     | 8m3/s     | 15000   |
| Fermentor           | 5     | 350000 L  | 1200000 |
| Blending/Storage 2  | 20    | 80000 L   | 110000  |
| Ion Exchanger       | 15    | 6300 L    | 75120   |
| Reactor vessel -1   | 3     | 27000 L   | 325000  |
| Rotart vaccum -1    | 2     | 45 m2     | 91200   |
| Reaction vessel - 2 | 8     | 40000 L   | 395120  |
| Rotary vaccum -2    | 2     | 37 m2     | 87000   |
| Crystallizer        | 1     | 40000 L   | 410000  |

Operating and FCI for succnic acid -





Acetic acid – Equipment cost –

| Equipment cost      |       |           |         |
|---------------------|-------|-----------|---------|
| Acetic Acid         |       |           |         |
|                     |       | Size per  |         |
| Costs of Equipment  | Units | unit      | Cost    |
| Blending/Storage    | 3     | 21000 gal | 110000  |
| Sterilizer          | 3     | 80m3/hr   | 200000  |
| Air Filtration -1   | 7     | 4m3/s     | 25000   |
| Compressor          | 2     | 2350 kW   | 275125  |
| Air Filtration -2   | 6     | 8m3/s     | 15000   |
| Fermentor           | 5     | 350000 L  | 1200000 |
| Blending/Storage 2  | 20    | 80000 L   | 110000  |
| Ion Exchanger       | 15    | 6300 L    | 75120   |
| Distillation column | 1     | -         | 60000   |
| Distillation column | 1     | (D = 3m)  | 95000   |
|                     |       |           |         |

Operating cost and FCI for acetic acid -



Appendix – C market demands for each acids


| GROUP     | 2               |             | СН           | E 4273        |             |           |                |
|-----------|-----------------|-------------|--------------|---------------|-------------|-----------|----------------|
| Demand I  | Projections (   | lbm)        |              |               |             |           |                |
| YEAR      | Acetic Acid     | Citric Acid | Fumaric Acid | Succinic Acid | Lactic Acid | Ethanol   | Propionic Acid |
| 2005      | 5000.0000       | 500.0000    | 50.0000      | 650.0000      | 310.0000    | 655.0000  | 219.0000       |
| 2006      | 5100.0000       | 525.0000    | 50.8000      | 689.0000      | 328.6000    | 706.0900  | 222.9420       |
| 2007      | 5202.0000       | 551.2500    | 51.6128      | 730.3400      | 348.3160    | 761.1650  | 226.9550       |
| 2008      | 5306.0400       | 578.8125    | 52.4386      | 774.1604      | 369.2150    | 820.5359  | 231.0401       |
| 2009      | 5412.1608       | 607.7531    | 53.2776      | 820.6100      | 391.3679    | 884.5377  | 235.1989       |
| 2010      | 5520.4040       | 638.1408    | 54.1301      | 869.8466      | 414.8499    | 953.5316  | 239.4324       |
| 2011      | 5630.8121       | 670.0478    | 54.9961      | 922.0374      | 439.7409    | 1027.9071 | 243.7422       |
| 2012      | 5743.4283       | 703.5502    | 55.8761      | 977.3597      | 466.1254    | 1108.0839 | 248.1296       |
| 2013      | 5858.2969       | 738.7277    | 56.7701      | 1036.0012     | 494.0929    | 1194.5144 | 252.5959       |
| 2014      | 5975.4628       | 775.6641    | 57.6784      | 1098.1613     | 523.7385    | 1287.6865 | 257.1427       |
| 2015      | 6094.9721       | 814.4473    | 58.6013      | 1164.0510     | 555.1628    | 1388.1261 | 261.7712       |
| 2016      | 6216.8715       | 855.1697    | 59.5389      | 1233.8941     | 588.4726    | 1496.3999 | 266.4831       |
| 2017      | 6341.2090       | 897.9282    | 60.4915      | 1307.9277     | 623.7809    | 1613.1191 | 271.2798       |
| 2018      | 6468.0332       | 942.8246    | 61.4594      | 1386.4034     | 661.2078    | 1738.9424 | 276.1628       |
| 2019      | 6597.3938       | 989.9658    | 62.4427      | 1469.5876     | 700.8802    | 1874.5799 | 281.1338       |
| 2020      | 6729.3417       | 1039.4641   | 63.4418      | 1557.7628     | 742.9330    | 2020.7971 | 286.1942       |
| 2021      | 6863.9285       | 1091.4373   | 64.4569      | 1651.2286     | 787.5090    | 2178.4193 | 291.3457       |
| 2022      | 7001.2071       | 1146.0092   | 65.4882      | 1750.3023     | 834.7596    | 2348.3360 | 296.5899       |
| 2023      | 7141.2312       | 1203.3096   | 66.5360      | 1855.3204     | 884.8451    | 2531.5062 | 301.9285       |
| 2024      | 7284.0559       | 1263.4751   | 67.6006      | 1966.6397     | 937.9358    | 2728.9637 | 307.3632       |
| 2025      | 7429.7370       | 1326.6489   | 68.6822      | 2084.6381     | 994.2120    | 2941.8229 | 312.8958       |
|           |                 |             |              |               |             |           |                |
| Price Pro | jections (\$/lb | ) m)        |              |               |             |           |                |
| YEAR      | Acetic Acid     | Citric Acid | Fumaric Acid | Succinic Acid | Lactic Acid | Ethanol   | Propionic Acid |
| 2005      | 0.5398          | 0.6668      | 0.5000       | 1.9958        | 0.7500      | 2.5000    | 0.5670         |
| 2006      | 0.5387          | 0.6635      | 0.4992       | 1.9839        | 0.7455      | 2.4807    | 0.5660         |
| 2007      | 0.5376          | 0.6602      | 0.4984       | 1.9721        | 0.7411      | 2.4615    | 0.5650         |
| 2008      | 0.5366          | 0.6569      | 0.4976       | 1.9603        | 0.7367      | 2.4424    | 0.5639         |
| 2009      | 0.5355          | 0.6536      | 0.4968       | 1.9486        | 0.7323      | 2.4235    | 0.5629         |
| 2010      | 0.5344          | 0.6504      | 0.4960       | 1.9370        | 0.7279      | 2.4047    | 0.5619         |
| 2011      | 0.5334          | 0.6471      | 0.4952       | 1.9254        | 0.7236      | 2.3861    | 0.5609         |
| 2012      | 0.5323          | 0.6439      | 0.4944       | 1.9140        | 0.7192      | 2.3677    | 0.5599         |
| 2013      | 0.5312          | 0.6407      | 0.4936       | 1.9025        | 0.7150      | 2.3493    | 0.5589         |
| 2014      | 0.5302          | 0.6375      | 0.4929       | 1.8912        | 0.7107      | 2.3312    | 0.5579         |
| 2015      | 0.5291          | 0.6344      | 0.4921       | 1.8799        | 0.7065      | 2.3131    | 0.5569         |
| 2016      | 0.5281          | 0.6312      | 0.4913       | 1.8687        | 0.7022      | 2.2952    | 0.5559         |
| 2017      | 0.5270          | 0.6281      | 0.4905       | 1.8576        | 0.6980      | 2.2774    | 0.5549         |
| 2018      | 0.5260          | 0.6249      | 0.4897       | 1.8465        | 0.6939      | 2.2598    | 0.5539         |
| 2019      | 0.5249          | 0.6218      | 0.4889       | 1.8355        | 0.6897      | 2.2423    | 0.5529         |
| 2020      | 0.5239          | 0.6187      | 0.4882       | 1.8245        | 0.6856      | 2.2250    | 0.5519         |
| 2021      | 0.5228          | 0.6157      | 0.4874       | 1.8136        | 0.6815      | 2.2078    | 0.5509         |
| 2022      | 0.5218          | 0.6126      | 0.4866       | 1.8028        | 0.6775      | 2.1907    | 0.5499         |
| 2023      | 0.5207          | 0.6095      | 0.4858       | 1.7921        | 0.6734      | 2.1737    | 0.5489         |
| 2024      | 0.5197          | 0.6065      | 0.4850       | 1.7814        | 0.6694      | 2.1569    | 0.5480         |
| 2025      | 0.5187          | 0.6035      | 0.4843       | 1.7708        | 0.6654      | 2.1402    | 0.5470         |

#### CH E 4273



Appendix D – Production rate, capacity, and expansion opportunities from mathematical model

## **GAMS Simulation**

**\$TITLE GLUC biorefining** 

\$ontext

The price of chemical are scaled to year 2001 dollar. The net present value is calculated using this dollar value too.

\$offtext

SETS

\*All the major chemicals and byproducts used in the analysis.

| c | Chemicals | /GLU, SUC, LAC, ETH, CIT, ACE, PRO, FUM, WAT, |
|---|-----------|-----------------------------------------------|
|   |           | SAL, AMM, SOD, AIR, CAR, CAL, SUL, GYP, CAC/  |

- \* GLU Glucose
- \* SUC Succinic Acid
- \* LAC Lactic Acid
- \* ETH Ethanol
- \* CIT Citric Acid
- \* ACE Acetic Acid
- \* PRO Propionic Acid
- \* FUM Fumaric Acid
- \* WAT Water
- \* SAL Salt
- \* AMM Ammonia
- \* SOD Sodium Hydoxide
- \* AIR Air
- \* CAR Carbon Dioxide
- \* CAL Calcium Hydroxide
- \* SUL Sulfuric Acid
- \* GYP Gypsum
- \* CAC Calcium Citrate

\*The only market being considered is the North American Market \*because of the biomass feed and plant location originates here.

m Markets /CA1, OH1, VA1 /

\*Unit production.

CH E 4273



p Processes /SUCPUR, LACPUR, ETHPUR, CITPUR, ACEPUR, PROPUR, FUMPUR/

- \* SUCPUR Succinic Acid Seperation and Purification
- \* LACPUR Lactic Acid Seperation and Purification
- \* ETHPUR Ethanol Seperation and Purification
- \* CITPUR Citric Acid Seperation and Purification
- \* ACEPUR Acetic Acid Seperation and Purification
- \* PROPUR Propionic Acid Seperation and Purification
- \* FUMPUR Fumaric Acid Seperation and Purification

\*The project will begin on year 2005. The project is split into 11 period \*(2 years each): year 2003 - 2005, 2005 - 2007, 2007 - 2009, 2009 - 2011, \*2011 - 2013, 2013 - 2015, 2015 - 2017, 2017 - 2019, 2019 - 2021, 2021 - 2023, 2023 -2025.

\*The starting year for each period is use in the analysis.

t Periods /2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017, 2019, 2021, 2023, 2025/

\*For each processes, there is one main chemical (product) and excess glucose. Other products

\*or reactants in the process will be reference to main chemical.

main(p,c) Main chemicals for each process (process node)

# /SUCPUR.SUC, LACPUR.LAC, ETHPUR.ETH, CITPUR.CIT, ACEPUR.ACE, PROPUR.PRO, FUMPUR.FUM/

| i plants   | /Anniston, Tuscaloosa, Gadsden, Talladega, Hot-Springs, Los-Angeles,                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detroit,   | Dubuque, Ottumwa, Fort-wayne, South-Bend, Columbus, Monroe,                                                                                                                                          |
| Mankato    | Grand-Rapids, Kalamazoo, Minneapolis, St-Cloud, Fergus-Falls,                                                                                                                                        |
| Wallkato,  | Joplin, Tupelo, Greensboro, Hickory, Manchester, Keene, Cleveland,<br>Dayton, Toledo, Youngstown, Findlay, Tulsa, Eugene, Medford,<br>Greenville, Dallas, Ft-Worth, Waco, Longview, Lufkin, Sherman, |
| Milwaukee, | Racine, Green-Bay, Appleton, Wasau, Sheboygan/                                                                                                                                                       |
| *,dummy /  |                                                                                                                                                                                                      |

kc corn markets /Pheonix, Yuma, Bakersfield, Fresno, Napa, Greeley, Pueblo, Louisville,

Cedar-Rapids, Dubuque, Mountain-Home, Danville, Peoria, Quincy, Evansville,

#### CH E 4273



Fort-Wayne, Meade, Bastrop, Denton, Billings, Lexington, Clovis, Las-

Cruces,

Roswell, Cincinatti, Dayton, Heppner, Dumas, El-Paso, Yakima /

taxprop(i) property taxes on plant locations

/ Anniston 30 Tuscaloosa 30 Gadsden 30 Talladega 30 Hot-Springs 20 Los-Angeles 30 Dubuque 23 Ottumwa 23 Fort-Wayne 33 South-Bend 33 Columbus 33 Monroe 25 Detroit 34 Grand-Rapids 34 Kalamazoo 34 Minneapolis 34 St-Cloud 34 Fergus-Falls 34 Mankato 34 Joplin 25 Tupelo 34 Greensboro 34 Hickory 34 Manchester 58 Keene 58 Cleveland 25 Dayton 25 Toledo 25 Youngstown 25 Findlay 25 Tulsa 34 Eugene 34 Medford 34 Greenville 34 Dallas 34 Ft-Worth 34 Waco 34 Longview 34 Lufkin 34 Sherman 34



CH E 4273

| GROUP 2        |
|----------------|
| Milwaukee 34   |
| Racine 34      |
| Green-Bay 34   |
| Appleton 34    |
| Wasau 34       |
| Sheboygan 34 / |
| * dummy 0 /    |

ALIAS (p,pp),(c,cc),(t,tt) ;

# PARAMETERS

int /0.535/

maxinvest /15000000/

corn(p) Percent of the reactants that are corn

| /SUCPUR | 0.194  |
|---------|--------|
| LACPUR  | 0.220  |
| ETHPUR  | 0.217  |
| CITPUR  | 0.142  |
| ACEPUR  | 0.280  |
| PROPUR  | 0.277  |
| FUMPUR  | 0.237/ |

alpha(p) Variable investment cost based on capacity (MM\$ per MM lbm)

| /SUCPUR | .56  |
|---------|------|
| LACPUR  | .28  |
| ETHPUR  | .42  |
| CITPUR  | .40  |
| ACEPUR  | .24  |
| PROPUR  | .32  |
| FUMPUR  | .38/ |

beta(p) Fixed investment cost (MM\$)

| /SUCPUR | 71.8  |
|---------|-------|
| LACPUR  | 55.5  |
| ETHPUR  | 62.1  |
| CITPUR  | 61.3  |
| ACEPUR  | 46.8  |
| PROPUR  | 56.9  |
| FUMPUR  | 41.1/ |



CH E 4273

delta(p) Unit operation cost based on main chemicals (\$ per MM lbm)

| /SUCPUR | 630886   |
|---------|----------|
| LACPUR  | 535465   |
| ETHPUR  | 521032   |
| CITPUR  | 327922   |
| ACEPUR  | 411590   |
| PROPUR  | 255132   |
| FUMPUR  | 200050/; |
|         |          |

### TABLE

;

price1(c,t) Average purchase price of chemicals in the time period (\$per lbm)

\*Price is determined from the market analysis done, adjusted to year 2001 value. \*The price of the chemical used is an average price over the 5 year period. \*The purchase price is approximately 1% - 2% higher than sales price to account \*for the transportation cost as well as other transection costs.

|        | 2003   | 2005     | 2007    | 2009    | 2011  | 2013       | 2015      | 2017 |
|--------|--------|----------|---------|---------|-------|------------|-----------|------|
| 2019   | 2021   | 2023     | 2025    |         |       |            |           |      |
| SUC    | 2.020  | 1.996    | 1.972   | 1.949   | 1.925 | 1.903      | 1.879     |      |
| 1.858  | 1.835  | 1.814    | 1.792   | 1.771   |       |            |           |      |
| LAC    | 0.759  | 0.750    | 0.741   | 0.732   | 0.724 | 0.715      | 0.707     |      |
| 0.698  | 0.690  | 0.682    | 0.673   | 0.665   |       |            |           |      |
| ETH    | 2.539  | 2.500    | 2.461   | 2.423   | 2.386 | 2.349      | 2.313     |      |
| 2.277  | 2.242  | 2.208    | 2.174   | 2.140   |       |            |           |      |
| CIT    | 0.675  | 0.667    | 0.659   | 0.650   | 0.647 | 0.641      | 0.634     |      |
| 0.627  | 0.619  | 0.616    | 0.610   | 0.603   |       |            |           |      |
| ACE    | 0.543  | 0.540    | 0.537   | 0.534   | 0.533 | 0.531      | 0.529     |      |
| 0.526  | 0.524  | 0.523    | 0.521   | 0.519   |       |            |           |      |
| PRO    | 0.567  | 0.567    | 0.567   | 0.567   | 0.566 | 0.566      | 0.566     |      |
| 0.566  | 0.566  | 0.565    | 0.565   | 0.565   |       |            |           |      |
| FUM    | 0.502  | 0.500    | 0.498   | 0.496   | 0.494 | 0.493      | 0.492     |      |
| 0.490  | 0.488  | 0.486    | 0.484   | 0.482   |       |            |           |      |
| GLU    | 0.070  | 0.070    | 0.069   | 0.069   | 0.069 | 0.069      | 0.069     |      |
| 0.069  | 0.069  | 0.069    | 0.068   | 0.068   |       |            |           |      |
| WAT    | 0.0002 | 2 0.0002 | 2 0.000 | 2 0.000 | 0.00  | 0.002 0.00 | 0.002 0.0 | 0002 |
| 0.0002 | 0.0002 | 0.0002   | 0.0002  | 2 0.000 | 2     |            |           |      |
| SAL    | 0.060  | 0.059    | 0.058   | 0.057   | 0.057 | 0.057      | 0.057     |      |
| 0.056  | 0.056  | 0.056    | 0.055   | 0.055   |       |            |           |      |
| AMM    | 0.041  | 0.041    | 0.040   | 0.040   | 0.040 | 0.040      | 0.040     |      |
| 0.040  | 0.040  | 0.039    | 0.039   | 0.039   |       |            |           |      |
| SOD    | 0.018  | 0.018    | 0.018   | 0.018   | 0.018 | 0.017      | 0.017     |      |
| 0.017  | 0.017  | 0.016    | 0.016   | 0.015   |       |            |           |      |

| GROUP 2 |       |       | (     | CH E 4273 | }     |       |       |  |
|---------|-------|-------|-------|-----------|-------|-------|-------|--|
| AIR     | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |  |
| 0.000   | 0.000 | 0.000 | 0.000 | 0.000     |       |       |       |  |
| CAR     | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |  |
| 0.000   | 0.000 | 0.000 | 0.000 | 0.000     |       |       |       |  |
| CAL     | 0.023 | 0.023 | 0.023 | 0.022     | 0.022 | 0.022 | 0.022 |  |
| 0.022   | 0.022 | 0.021 | 0.021 | 0.021     |       |       |       |  |
| SUL     | 0.005 | 0.005 | 0.004 | 0.004     | 0.004 | 0.004 | 0.004 |  |
| 0.004   | 0.004 | 0.004 | 0.004 | 0.004     |       |       |       |  |
| GYP     | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |  |
| 0.000   | 0.000 | 0.000 | 0.000 | 0.000     |       |       |       |  |
| CAC     | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |  |
| 0.000   | 0.000 | 0.000 | 0.000 | 0.000     |       |       |       |  |

## TABLE

price2(c,t) Sales price of chemicals per lbm

\*Price is determined from the market analysis done, adjusted to year 2001 value. \*The price of the chemical used is an average price over the 5 year period.

|        | 2003   | 2005   | 2007    | 2009    | 2011  | 2013    | 2015     | 2017 |
|--------|--------|--------|---------|---------|-------|---------|----------|------|
| 2019   | 2021   | 2023   | 2025    |         |       |         |          |      |
| SUC    | 2.010  | 1.986  | 1.962   | 1.939   | 1.915 | 1.893   | 1.869    |      |
| 1.848  | 1.825  | 1.804  | 1.782   | 1.761   |       |         |          |      |
| LAC    | 0.749  | 0.740  | 0.731   | 0.722   | 0.714 | 0.705   | 0.697    |      |
| 0.688  | 0.680  | 0.672  | 0.663   | 0.655   |       |         |          |      |
| ETH    | 2.529  | 2.490  | 2.451   | 2.413   | 2.376 | 2.339   | 2.303    |      |
| 2.267  | 2.232  | 2.198  | 2.164   | 2.130   |       |         |          |      |
| CIT    | 0.665  | 0.657  | 0.649   | 0.640   | 0.637 | 0.631   | 0.624    |      |
| 0.617  | 0.609  | 0.606  | 0.600   | 0.593   |       |         |          |      |
| ACE    | 0.533  | 0.530  | 0.527   | 0.524   | 0.523 | 0.521   | 0.519    |      |
| 0.516  | 0.514  | 0.513  | 0.511   | 0.509   |       |         |          |      |
| PRO    | 0.557  | 0.557  | 0.557   | 0.557   | 0.556 | 0.556   | 0.556    |      |
| 0.556  | 0.556  | 0.555  | 0.555   | 0.555   |       |         |          |      |
| FUM    | 0.492  | 0.490  | 0.488   | 0.486   | 0.484 | 0.483   | 0.482    |      |
| 0.480  | 0.478  | 0.476  | 0.474   | 0.472   |       |         |          |      |
| GLU    | 0.040  | 0.040  | 0.039   | 0.039   | 0.039 | 0.039   | 0.039    |      |
| 0.039  | 0.039  | 0.039  | 0.038   | 0.038   |       |         |          |      |
| WAT    | 0.0001 | 0.000  | 1 0.000 | 1 0.000 | 0.00  | 0.0 0.0 | 0001 0.0 | 0001 |
| 0.0001 | 0.0001 | 0.0001 | 0.0001  | 0.000   | 1     |         |          |      |
| SAL    | 0.059  | 0.058  | 0.057   | 0.057   | 0.056 | 0.056   | 0.056    |      |
| 0.055  | 0.055  | 0.055  | 0.055   | 0.054   |       |         |          |      |
| AMM    | 0.040  | 0.040  | 0.039   | 0.039   | 0.039 | 0.039   | 0.039    |      |
| 0.039  | 0.039  | 0.038  | 0.038   | 0.038   |       |         |          |      |
| SOD    | 0.017  | 0.017  | 0.017   | 0.017   | 0.017 | 0.016   | 0.016    |      |
| 0.016  | 0.016  | 0.015  | 0.015   | 0.014   |       |         |          |      |

| GROUP | 2     |       | (     | CH E 4273 |       |       |       |
|-------|-------|-------|-------|-----------|-------|-------|-------|
| AIR   | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000     |       |       |       |
| CAR   | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000     |       |       |       |
| CAL   | 0.022 | 0.022 | 0.022 | 0.022     | 0.022 | 0.022 | 0.022 |
| 0.021 | 0.021 | 0.021 | 0.021 | 0.020     |       |       |       |
| SUL   | 0.004 | 0.004 | 0.004 | 0.004     | 0.004 | 0.004 | 0.004 |
| 0.004 | 0.004 | 0.004 | 0.003 | 0.003     |       |       |       |
| GYP   | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000     |       |       |       |
| CAC   | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 ;   |       |       |       |

#### TABLE

mu1(p,c) Positive constant charateristic of process (product)

\*Relationship between the main chemical and other products in the reaction.

\*This relationship is based on the reaction coefficient of each material

\*compare to the main chemical and the conversion data for the reaction.

\*The relationship is based on mass balance rather than mole balance.

\*All the main chemical will have mu value of 1.

| S          | UC  | LAC   | ET   | Ή C  | CIT | ACE | PRC | FU | М  | WAT | ( | JLU |   |
|------------|-----|-------|------|------|-----|-----|-----|----|----|-----|---|-----|---|
| SAL AMM    | SC  | DD    | AIR  | CA   | R   | CAL | SUL | GY | ΥP | CAC |   |     |   |
| SUCPUR     |     | 1 0   | 0    | 0    | 0   | 0   | 0   | 0  | 0  | 0   | 0 | 0   | 0 |
| 0.6667 0 0 | ) ( | 0.629 | 7 0  |      |     |     |     |    |    |     |   |     |   |
| LACPUR     | . ( | 0 1   | 0    | 0    | 0   | 0   | 0   | 0  | 0  | 0   | 0 | 0   | 0 |
| 1.0101 0 0 | ) ( | 0     | 0    |      |     |     |     |    |    |     |   |     |   |
| ETHPUR     | . ( | 0 0   | 1    | 0    | 0   | 0   | 0   | 0  | 0  | 0   | 0 | 0   | 0 |
| 1.0101 0 0 | ) ( | 0     | 0    |      |     |     |     |    |    |     |   |     |   |
| CITPUR     | 0   | 0     | 0    | 1    | 0   | 0   | 0   | 0  | 0  | 0   | 0 | 0   | 0 |
| 1.4137 0 0 | ) ( | 0.737 | 1 0. | 0888 |     |     |     |    |    |     |   |     |   |
| ACEPUR     | . ( | 0 0   | 0    | 0    | 1   | 0   | 0   | 0  | 0  | 0   | 0 | 0   | 0 |
| 0.6905 0 0 | ) ( | 0     | 0    |      |     |     |     |    |    |     |   |     |   |
| PROPUR     | (   | 0 0   | 0    | 0    | 0   | 1   | 0   | 0  | 0  | 0   | 0 | 0   | 0 |
| 1.3444 0 0 | ) ( | 0     | 0    |      |     |     |     |    |    |     |   |     |   |
| FUMPUR     | l   | 0 (   | ) 0  | 0    | 0   | 0   | 1   | 0  | 0  | 0   | 0 | 0   | 0 |
| 1.0126 0 0 | ) ( | 0     | 0    | ;    |     |     |     |    |    |     |   |     |   |

### TABLE

mu2(p,c) Positive constant charateristic of process (reactant)

\*Relationship between the main chemical and other reactants in the reaction.

\*This relationship is based on the reaction coefficient of each material

\*compare to the main chemical and the conversion data for the reaction.

\*The relationship is based on mass balance rather than mole balance.



|      |       | SUC  | C L          | AC  | ETH | C C | IT | ACE | PRO | FUM | V  | VAT  | GL | U |
|------|-------|------|--------------|-----|-----|-----|----|-----|-----|-----|----|------|----|---|
| SAL  | AM    | Μ    | SOD          | Α   | IR  | CAF | R  | CAL | SUL | GYP | C. | AC   |    |   |
|      | SUCP  | UR   | 0            | 0   | 0   | 0   | 0  | 0   | 0   | 2.3 | 3  | 0.36 | 0  | 0 |
| 4.22 | 0 0   | 1.65 | 5 3.9        | 931 | 0   | 0   |    |     |     |     |    |      |    |   |
|      | LACP  | UR   | 0            | 0   | 0   | 0   | 0  | 0   | 0   | 2.1 | 3  | 3.1  | 0  | 0 |
| 5.41 | 0     | 0    | 0            | 0   | 0   |     |    |     |     |     |    |      |    |   |
|      | ETHP  | UR   | 0            | 0   | 0   | 0   | 0  | 0   | 0   | 2.3 | 3  | 3.1  | 0  | 0 |
| 5.41 | 0     | 0    | 0            | 0   | 0   |     |    |     |     |     |    |      |    |   |
|      | CITPU | JR   | 0            | 0   | 0   | 0   | 0  | 0   | 0   | 2.2 | 3  | 3.14 | 0  | 0 |
| 6.14 | 3 0   | 2.93 | <b>30</b> 3. | 685 | 0   | 0   |    |     |     |     |    |      |    |   |
|      | ACEP  | UR   | 0            | 0   | 0   | 0   | 0  | 0   | 0   | 2.3 | 3  | 2.05 | 0  | 0 |
| 3.37 | 1 0   | 0    | 0            | 0   | 0   |     |    |     |     |     |    |      |    |   |
|      | PROP  | UR   | 0            | 0   | 0   | 0   | 0  | 0   | 0   | 2.4 | 3  | 1.30 | 0  | 0 |
| 4.12 | 90    | 0    | 0            | 0   | 0   |     |    |     |     |     |    |      |    |   |
|      | FUMP  | UR   | 0            | 0   | 0   | 0   | 0  | 0   | 0   | 2.1 | 3  | 2.36 | 0  | 0 |
| 5.17 | 7 0   | 0    | 0            | 0   | 0   | :   |    |     |     |     |    |      |    |   |

### TABLE

usupply(c,m,t) Upper supply of chemicals (MM lbm per time period)

\*The supply of glucose stream is at 1.88 MM lbm per day for 330 days per year \*and for 2 years per time period. Assume constant supply of glucose stream for \*the whole time period.

| 2       | 2003 20  | 05 200   | 7 2009  | 2011     | 2013       | 2015   |
|---------|----------|----------|---------|----------|------------|--------|
| 2017    | 2019 20  | 021 202  | 23 2025 | 5        |            |        |
| GLU.CA1 | 546550   | 1 546541 | 6 54653 | 31 54652 | 246 546516 | 51     |
| 5465293 | 5465426  | 5465558  | 5466552 | 5467546  | 546853     | 546953 |
| SUC.CA1 | 546546   | 546546   | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |
| LAC.CA1 | 546546   | 546546   | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |
| ETH.CA1 | 546546   | 546546   | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |
| CIT.CA1 | 546546   | 546546   | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |
| ACE.CA1 | 546546   | 546546   | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |
| PRO.CA1 | 546546   | 546546   | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |
| FUM.CA1 | 546546   | 546546   | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |
| WAT.CA  | l 546546 | 5 546546 | 546546  | 546546   | 546546     | 546546 |
| 546546  | 546546   | 546546   | 546546  | 546546   | 546546     |        |



#### GROUP 2 CH E 4273 SAL.CA1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 AMM.CA1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 SOD.CA1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 AIR.CA1 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 CAR.CA1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 CAL.CA1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 SUL.CA1 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 GYP.CA1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 CAC.CA1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546

GLU.OH1 5465501 5465416 5465331 5465246 5465161 5465293 5465426 5465558 5466552 5467546 546853 546953 SUC.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 LAC.OH1 546546 546546 546546 546546 546546 546546 546546 546546 ETH.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 CIT.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 ACE.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 PRO.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 FUM.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 WAT.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 SAL.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 AMM.OH1 546546 546546 546546 546546 546546 546546 546546 SOD.OH1 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 546546 AIR.OH1 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565 4546565



 GROUP 2
 CH E 4273

 CAR.OH1
 546546
 546546
 546546
 546546
 546546
 546546

 546546
 546546
 546546
 546546
 546546
 546546
 546546

 546546
 546546
 546546
 546546
 546546
 546546
 546546

 546546
 546546
 546546
 546546
 546546
 546546
 546546

 546546
 546546
 546546
 546546
 546546
 546546
 546546

 546565
 4546565
 4546565
 4546565
 4546565
 4546565
 4546565

 4546565
 4546565
 4546565
 4546565
 4546565
 4546565
 4546565

 4546565
 4546565
 4546565
 4546565
 4546565
 4546565
 4546565

 4546565
 4546565
 4546565
 4546565
 4546565
 4546565
 4546565

 4546565
 4546565
 4546565
 4546565
 4546565
 4546565
 4546565

 6YP.OH1
 546546
 546546
 546546
 546546
 546546
 546546

 546546</t

546546

 GROUP 2
 CH E 4273

 CAC.VA1
 546546
 546546
 546546
 546546

 546546
 546546
 546546
 546546
 546546

# TABLE

udemand(c,m,t) Upper demand of chemicals (MM lbm per time period)

\*Assume no sale of the glucose stream for time period.

|         | 2003   | 2005  | 200    | )7    | 2009   |       | 2011  | 2013    | 2015   |      |
|---------|--------|-------|--------|-------|--------|-------|-------|---------|--------|------|
| 2017    | 2019   | 2021  | 20     | 23    | 2025   | 5     |       |         |        |      |
| GLU.CA1 | 0.00   | 00 0  | .0000  | 0.    | 0000   | 0.00  | 00    | 0.0000  | 0.0000 |      |
| 0.0000  | 0.0000 | 0.000 | 0 (    | 0.000 | 0 0.   | 0000  | 0.0   | 0000    |        |      |
| ACE.CA1 | 102.   | 0 10  | 06.1   | 11(   | ).4    | 110.4 | 1     | 14.9 11 | 9.5 1  | 24.3 |
| 129.4   | 134.6  | 140.0 | 14     | 5.7   | 151.   | 6     |       |         |        |      |
| CIT.CA1 | 10.4   | 11.   | 4      | 12.6  | 12     | .6    | 13.9  | 15.3    | 16.9   |      |
| 18.6    | 20.5   | 22.6  | 24.9   |       | 27.5   |       |       |         |        |      |
| FUM.CA1 | 1.0    | 1.1   | l      | 1.1   | 1.1    |       | 1.1   | 1.2     | 1.2    | 1.2  |
| 1.3     | 1.3    | 1.4   | 1.4    |       |        |       |       |         |        |      |
| SUC.CA1 | 13.5   | 15    | .2     | 17.1  | 1′     | 7.1   | 19.2  | 2 21.6  | 24.2   |      |
| 27.2    | 30.6   | 34.4  | 38.6   |       | 43.4   |       |       |         |        |      |
| LAC.CA1 | 6.4    | 7.2   |        | 8.1   | 8.1    |       | 9.1   | 10.3    | 11.6   |      |
| 13.0    | 14.6   | 16.4  | 18.4   |       | 20.7   |       |       |         |        |      |
| ETH.CA1 | 13.7   | 16    | .0     | 18.6  | 18     | 8.6   | 21.6  | 5 25.1  | 29.1   |      |
| 33.9    | 39.3   | 45.7  | 53.1   |       | 61.7   |       |       |         |        |      |
| PRO.CA1 | 4.5    | 4.6   | 4      | 4.8   | 4.8    |       | 5.0   | 5.1     | 5.3    | 5.5  |
| 5.7 5   | 5.9    | 6.2   | 6.4    |       |        |       |       |         |        |      |
| WAT.CA1 | 121    | 333   | 121333 | ;     | 121333 | 12    | 21333 | 121333  | 1213   | 33   |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| SAL.CA1 | 1213   | 33 1  | 21333  | 1     | 21333  | 12    | 1333  | 121333  | 12133  | 3    |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| AMM.CA  | 1 121  | 1333  | 12133  | 3     | 121333 | 1     | 21333 | 121333  | 1213   | 333  |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| SOD.CA1 | 1213   | 333   | 121333 | 1     | 121333 | 12    | 1333  | 121333  | 12133  | 33   |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| AIR.CA1 | 1213   | 33 1  | 21333  | 1     | 21333  | 121   | 1333  | 121333  | 12133. | 3    |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| CAR.CA1 | 1213   | 333   | 121333 |       | 121333 | 12    | 1333  | 121333  | 12133  | 33   |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| CAL.CA1 | 1213   | 333   | 121333 | 1     | 121333 | 12    | 1333  | 121333  | 12133  | 33   |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| SUL.CA1 | 1213   | 33 1  | 21333  | 1     | 21333  | 12    | 1333  | 121333  | 12133  | 3    |
| 121333  | 121333 | 121   | 333    | 121.  | 333    | 12133 | 3     | 121333  |        |      |
| GYP.CA1 | 1213   | 333   | 121333 | ]     | 121333 | 12    | 1333  | 121333  | 12133  | 33   |
| 121333  | 121333 | 121   | 333    | 121   | 333    | 12133 | 3     | 121333  |        |      |

GROUP 2 CH E 4273 121333 121333 121333 CAC.CA1 121333 121333 121333 121333 121333 121333 121333 121333 121333 GLU.OH1 0 0 0 0 0 0 0 0 0 0 0 0 307.5 320.0 332.9 ACE.OH1 332.9 346.3 360.3 374.9 422.2 439.2 457.0 390.0 405.8 CIT.OH1 31.2 34.4 37.9 37.9 41.8 46.1 50.8 68.1 75.1 82.8 56.1 61.8 FUM.OH1 3.2 3.3 3.4 3.5 3.6 3.7 3.1 3.3 3.8 4.0 4.1 4.2 SUC.OH1 40.8 45.8 51.5 51.5 57.8 65.0 73.0 92.2 103.6 116.4 82.0 130.8 LAC.OH1 19.4 21.8 24.5 24.5 27.6 31.0 34.8 44.039.1 49.4 55.5 62.4 41.4 48.2 56.0 56.0 ETH.OH1 65.0 75.6 87.8 102.1 118.6 137.8 160.2 186.1 PRO.OH1 13.5 13.9 14.5 14.5 15.5 16.1 15.0 17.3 17.9 19.2 18.6 16.7 WAT.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 SAL.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 AMM.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 SOD.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 AIR.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 CAR.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 CAL.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 SUL.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 GYP.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514



GROUP 2 CH E 4273 CAC.OH1 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514 332846.514

0 0 0 GLU.VA1 0 0 0 0 0 0 0 0 0 ACE.VA1 85.85 89.32 92.93 92.93 96.68 100.59 108.88 104.65 113.28 117.85 122.61 127.57 9.61 10.59 10.59 CIT.VA1 8.71 11.68 12.87 14.19 15.65 19.02 20.97 23.12 17.25 0.91 FUM.VA1 0.86 0.88 0.91 0.94 0.97 1.00 1.18 1.04 1.07 1.10 1.14 11.38 12.79 14.37 14.37 16.14 18.14 SUC.VA1 20.38 22.90 25.73 28.91 32.49 36.50 7.70 LAC.VA1 5.43 6.10 6.85 6.85 8.65 9.72 13.79 15.49 10.92 12.27 17.41 ETH.VA1 11.57 13.44 15.62 15.62 18.16 21.10 24.52 44.71 51.96 28.49 33.11 38.48 PRO.VA1 3.76 3.89 4.03 4.03 4.18 4.33 4.49 4.65 4.82 5.00 5.18 5.37 92912.82 92912.82 92912.82 WAT.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 SAL.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 AMM.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 SOD.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 AIR.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 CAR.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 CAL.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 SUL.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 GYP.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 CAC.VA1 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82 92912.82

Table dcorn(i,kc) distance from corn markets to plant (miles)

Pheonix Yuma Bakersfield Fresno Napa Greeley Pueblo Louisville Cedar-Rapids Dubuque Mountain-Home Danville Peoria Quincy





| and the |   |
|---------|---|
|         | ) |
|         |   |
|         |   |

| GRO        | UP 2           |      |        | CH         | E 4273                  |         |                |            |        |
|------------|----------------|------|--------|------------|-------------------------|---------|----------------|------------|--------|
|            | Dallas         | 879  | 1032   | 1281       | 13                      | 23      | 1474           | 679        | 571    |
| 838        | 686            | 741  | 1251   | 722        | 670                     | 583     | 636            | 855        | 363    |
| 288        | 1250           | 1090 | 571    | 725        | 588                     | 44      | 6 815          | 855        | 1479   |
| 358        | 563            | 1567 |        |            |                         |         |                |            |        |
|            | Ft-Worth       | 867  | 1021   | 127        | 70 1                    | 313     | 1463           | 673        | 563    |
| 850        | 691            | 747  | 1242   | 731        | 678                     | 590     | 646            | 864        | 358    |
| 299        | 1261           | 1085 | 569    | 714        | 576                     | 43      | 5 825          | 864        | 1471   |
| 350        | 551            | 1560 | 005    | , 1 1      | 010                     | 15      | 020            |            | 11/1   |
| 200        | Waco           | 871  | 1021   | 128        | 3 13                    | 332     | 1488           | 737        | 619    |
| 871        | 773            | 828  | 1291   | 801        | 754                     | 668     | 707            | 931        | 429    |
| 321        | 1307           | 1153 | 648    | 727        | 571                     | 44      | 2 884          | 926        | 1522   |
| 400        | 540            | 1613 | 010    | 121        | 571                     |         | 2 001          | )20        | 1022   |
| 400        | Longview       | 1015 | 4 114  | 58 14      | 107                     | 1448    | 1598           | 778        | 681    |
| 718        | 672            | 722  | 1363   | 666        | 632                     | 55/     | 560            | 701        | /59    |
| 166        | 1151           | 1170 | 638    | 851        | 711                     | 57      | 200<br>2725 CY |            | 1588   |
| 100        | 685            | 1675 | 058    | 0.51       | /11                     | 57      | 2 155          | 113        | 1388   |
| 4/3        | U05<br>Luflein | 1075 | 1162   | 142        | 2 1                     | 470     | 1672           | 921        | 776    |
| 722        |                | 1014 | 1406   | 720        | 5 I <sup>4</sup><br>701 | 4/0     | 1025<br>617    | 031<br>951 | 512    |
| 104        | /44            | 195  | 702    | 129<br>067 | 701                     | 024     | 01/<br>2 700   | 0.01       | 1624   |
| 194<br>514 | 1190           | 1237 | /05    | 807        | /14                     | 30      | 00 /00         | 0 034      | 1034   |
| 514        | 084            | 1/22 | 1040   | 1.0        | 70 1                    | 1216    | 14(2)          | (20        | 540    |
| 0.25       | Snerman        | 884  | 1040   | (72)       | /8                      | 527     | 1462           | 039        | 540    |
| 823        | 626            | 082  | 1222   | 0/2        | 015                     | 527     | 393<br>A 773   | 806        | 321    |
| 283        | 1215           | 1045 | 516    | /26        | 602                     | 45      | 4 //3          | 810        | 1447   |
| 335        | 581            | 1534 | co 1.c | 1.5 1      | 720                     | 1 7 2 1 | 1000           | 000        | 00     |
|            | Milwaukee      | 146  | 50 16  | 15 1       | /38                     | 1731    | 1822           | 880        | 926    |
| 750        | 208            | 147  | 1410   | 191        | 183                     | 269     | 339            | 194        | /66    |
| 737        | 693            | 1036 | 628    | 1294       | 1271                    |         | 121 3          | 17 28      | 5 1565 |
| 896        | 1271           | 1610 |        |            |                         |         |                |            |        |
|            | Racine         | 1457 | 1613   | 173        | 9 1                     | 733     | 1825           | 881        | 925    |
| 735        | 205            | 147  | 1415   | 175        | 170                     | 259     | 323            | 181        | 762    |
| 723        | 686            | 1043 | 628    | 1291       | 1265                    | 5 1     | 115 30         | 02 27      | 1 1572 |
| 891        | 1265           | 1618 |        |            |                         |         |                |            |        |
|            | Green-Bay      | 148  | 36 16. | 39 1'      | 742                     | 1729    | 1811           | 886        | 948    |
| 852        | 254            | 193  | 1384   | 298        | 276                     | 351     | 446            | 283        | 810    |
| 835        | 747            | 997  | 644    | 1324       | 1316                    | 11      | 70 41          | 3 375      | 5 1526 |
| 942        | 1320           | 1566 |        |            |                         |         |                |            |        |
|            | Appleton       | 1469 | 9 162  | 2 17       | 27                      | 1715    | 1798           | 870        | 930    |
| 842        | 234            | 173  | 1373   | 283        | 257                     | 331     | 431            | 277        | 791    |
| 817        | 750            | 988  | 627    | 1306       | 1297                    | 11      | 50 40          | 5 369      | 9 1518 |
| 922        | 1301           | 1558 |        |            |                         |         |                |            |        |
|            | Wasau          | 1432 | 1583   | 167        | 77 1                    | 661     | 1740           | 823        | 893    |
| 910        | 234            | 182  | 1309   | 342        | 294                     | 353     | 487            | 351        | 770    |
| 849        | 825            | 919  | 588    | 1272       | 1274                    | 11      | 31 47          | 7 443      | 3 1449 |
| 902        | 1280           | 1487 |        |            |                         |         |                |            |        |
|            | Sheboygan      | 148  |        | 41 1       | 755                     | 1745    | 1831           | 896        | 950    |
| 797        | 240            | 177  | 1411   | 246        | 236                     | 318     | 394            | 230        | 801    |

| GROU       | JP 2        |              |     | CH I | E 4273 |      |     |     |      |
|------------|-------------|--------------|-----|------|--------|------|-----|-----|------|
| 793<br>932 | 706<br>1309 | 1029<br>1601 | 649 | 1323 | 1307   | 1158 | 359 | 322 | 1559 |
|            |             |              |     |      |        | ;    |     |     |      |

#### Parameter

rmcostcorn(kc) cost of raw materials from corn markets (\$ per pound)

/ Pheonix 0.06085 Yuma 0.06085 Bakersfield 0.05357 Fresno 0.05357 Napa 0.05357 Greeley 0.04525 Pueblo 0.04577 Louisville 0.04993 Cedar-Rapids 0.04005 Dubuque 0.03953 Mountain-Home 0.05617 Danville 0.04317 Peoria 0.04317 Quincy 0.04317 Evansville 0.04213 Fort-Wayne 0.04213 Meade 0.043688 Bastrop 0.04889 Denton 0.04473 Billings 0.03849 0.04213 Lexington Clovis 0.05357 Las-Cruces 0.05357 Roswell 0.05357 Cincinatti 0.04213 Dayton 0.04213 Heppner 0.05045 Dumas 0.04941 El-Paso 0.04941 Yakima 0.05617 /

#### Table

cornmax(kc,t) maximum initial amount of corn from any corn market location 30% of production and 30% rate of growth

|      | 2003 | 2005 | 2007 | 2009 | 2011 |
|------|------|------|------|------|------|
| 2013 | 2015 | 2017 | 2019 | 2021 | 2023 |
| 2025 |      |      |      |      |      |

| GROUP 2     |                | CH E 4273     |             |             |
|-------------|----------------|---------------|-------------|-------------|
| Pheonix     | 24753178.3     | 25990837.21   | 28654898.02 | 30087642.93 |
| 33171626.33 | 36571718.02    | 40320319.12   | 44453151.83 | 49009599.89 |
| 54033083.88 | 59571474.98    | 62550048.73   |             |             |
| Yuma        | 24753178.3     | 25990837.21   | 28654898.02 | 30087642.93 |
| 33171626.33 | 36571718.02    | 40320319.12   | 44453151.83 | 49009599.89 |
| 54033083.88 | 59571474.98    | 62550048.73   |             |             |
| Bakersfield | l 88914477.8   | 93360201.69   | 102929622.4 | 108076103.5 |
| 119153904.1 | 131367179.3    | 144832315.1   | 159677627.4 | 176044584.2 |
| 194089154.1 | 213983292.4    | 224682457     |             |             |
| Fresno      | 88914477.8     | 93360201.69   | 102929622.4 | 108076103.5 |
| 119153904.1 | 131367179.3    | 144832315.1   | 159677627.4 | 176044584.2 |
| 194089154.1 | 213983292.4    | 224682457     |             |             |
| Napa        | 88914477.8     | 93360201.69   | 102929622.4 | 108076103.5 |
| 119153904.1 | 131367179.3    | 144832315.1   | 159677627.4 | 176044584.2 |
| 194089154.1 | 213983292.4    | 224682457     |             |             |
| Greeley     | 554535487.8    | 582262262.2   | 641944144.1 | 674041351.3 |
| 743130589.8 | 819301475.2    | 903279876.4   | 995866063.8 | 1097942335  |
| 1210481425  | 1334555771     | 1401283559    |             |             |
| Pueblo      | 554535487.8    | 582262262.2   | 641944144.1 | 674041351.3 |
| 743130589.8 | 819301475.2    | 903279876.4   | 995866063.8 | 1097942335  |
| 1210481425  | 1334555771     | 1401283559    |             |             |
| Louisville  | 196555849.9    | 206383642.4   | 227537965.8 | 238914864.1 |
| 263403637.6 | 290402510.5    | 320168767.8   | 352986066.5 | 389167138.3 |
| 429056770   | 473035088.9    | 496686843.4   |             |             |
| Cedar-Rapi  | ids 6613094016 | 6943748717    | 7655482960  | 8038257108  |
| 8862178462  | 9770551754     | 10772033309   | 11876166723 | 13093473812 |
| 14435554878 | 15915199253    | 16710959216   |             |             |
| Dubuque     | 6613094016     | 6943748717    | 7655482960  | 8038257108  |
| 8862178462  | 9770551754     | 10772033309   | 11876166723 | 13093473812 |
| 14435554878 | 15915199253    | 16710959216   |             |             |
| Mountain-I  | Home 69804881. | 28 73295125.3 | 80807875.0  | 69          |
| 84848269.48 | 93545217.1     | 103133601.9   | 113704796   | 125359537.6 |
| 138208890.2 | 152375301.5    | 167993769.9   | 176393458.4 |             |
| Danville    | 4257051705     | 4469904291    | 4928069480  | 5174472954  |
| 5704856432  | 6289604217     | 6934288649    | 7645053235  | 8428671192  |
| 9292609989  | 10245102513    | 10757357639   |             |             |
| Peoria      | 4257051705     | 4469904291    | 4928069480  | 5174472954  |
| 5704856432  | 6289604217     | 6934288649    | 7645053235  | 8428671192  |
| 9292609989  | 10245102513    | 10757357639   |             |             |
| Quincy      | 4257051705     | 4469904291    | 4928069480  | 5174472954  |
| 5704856432  | 6289604217     | 6934288649    | 7645053235  | 8428671192  |
| 9292609989  | 10245102513    | 10757357639   |             | -           |
| Evansville  | 3101035927     | 3256087723    | 3589836715  | 3769328550  |
| 4155684727  | 4581642411     | 5051260758    | 5569014986  | 6139839022  |
| 6769172522  | 7463012705     | 7836163341    |             |             |

|                          |                           |                           |                            | ST KI       |
|--------------------------|---------------------------|---------------------------|----------------------------|-------------|
| GROUP 2                  |                           | CH E 4273                 |                            |             |
| Fort-Wayne               | e 3101035927              | 3256087723                | 3589836715                 | 3769328550  |
| 4155684727               | 4581642411                | 5051260758                | 5569014986                 | 6139839022  |
| 6769172522               | 7463012705                | 7836163341                |                            |             |
| Meade                    | 3154231532                | 3311943109                | 3651417278                 | 3833988142  |
| 4226971926               | 4660236549                | 5137910795                | 5664546651                 | 6245162683  |
| 6885291858               | 7591034273                | 7970585987                |                            |             |
| Bastrop                  | 328511568.5               | 344937146.9               | 380293204.5                | 399307864.7 |
| 440236920.8              | 485361205.2               | 535110728.7               | 589959578.4                | 650430435.2 |
| 717099554.8              | 790602259.2               | 830132372.2               |                            |             |
| Denton                   | 480482612.1               | 504506742.7               | 556218683.8                | 584029618   |
| 643892653.9              | 709891650.9               | 782655545.1               | 862877738.5                | 951322706.7 |
| 1048833284               | 1156338696                | 1214155631                |                            |             |
| Billings                 | 17145058.56               | 18002311.49               | 19847548.42                | 20839925.84 |
| 22976018.23              | 25331060.1                | 27927493.76               | 30790061.87                | 33946043.22 |
| 37425512.65              | 41261627.69               | 43324709.08               |                            |             |
| Lexington                | 7763496829                | 8151671671                | 8987218017                 | 9436578918  |
| 10403828257              | 11470220653               | 12645918270               | 13942124893                | 15371192694 |
| 16946739945              | 18683780790               | 19617969829               |                            |             |
| Clovis                   | 26942234.88               | 28289346.62               | 31189004.65                | 32748454.89 |
| 36105171.51              | 39805951.59               | 43886061.63               | 48384382.95                | 53343782.2  |
| 58811519.87              | 64839700.66               | 68081685.69               |                            |             |
| Las-Cruces               | 26942234.88               | 28289346.62               | 31189004.65                | 32748454.89 |
| 36105171.51              | 39805951.59               | 43886061.63               | 48384382.95                | 53343782.2  |
| 58811519.87              | 64839700.66               | 68081685.69               |                            |             |
| Roswell                  | 26942234.88               | 28289346.62               | 31189004.65                | 32748454.89 |
| 36105171.51              | 39805951.59               | 43886061.63               | 48384382.95                | 53343782.2  |
| 58811519.87              | 64839/00.66               | 68081685.69               | 0140115050                 | 005(550010  |
| Cincinatti               | 1856488372                | 1949312791                | 2149117352                 | 2256573219  |
| 248/8/19/4               | 2/428/8852                | 3024023934                | 3333986387                 | 36/5/19992  |
| 4052481291               | 446/860624                | 4691253655                | 0140117050                 | 005(570010  |
| Dayton                   | 1856488372                | 1949312/91                | 214911/352                 | 22565/3219  |
| 248/8/19/4               | 2/428/8852                | 3024023934                | 3333986387                 | 30/5/19992  |
| 4052481291               | 440/800624                | 4091253055                | 42062001 65                | 45215106 22 |
| Heppher                  | 5/198055.84               | 39038380.33               | 43002091.03                | 43213190.23 |
| 49849/33.83              | 34939333.02<br>80522005 8 | 00392087.30               | 00803437.82                | /3030/90.19 |
| 01199990.19<br>Dumas     | 001646292 2               | 93999143.39               | 1042769204                 | 1005056914  |
| 1209202299               | 901040365.2               | 940/20/02.4               | 1043/00394                 | 1093930814  |
| 1208292388               | 1552142557                | 1408080949                | 101922/301                 | 1/83198100  |
| El Dago                  | 2109919320                | 0467297024                | 1042769204                 | 1005056914  |
| EI-Pasu                  | 701040303.2<br>1220170257 | 740/20/02.4<br>1/686860/0 | 1045/08574                 | 1070700014  |
| 1200272300               | 1332142337                | 1400000949<br>2278/1550/  | 101722/301                 | 1/03170100  |
| 17001007/0<br>Valima     | 2107717J20<br>1/150081/   | 22/0413304<br>1/867080/ 7 | 163010/8/ 7                | 172115458.0 |
| 1 akiiiia<br>180757202 5 | 200207/16                 | 7306511767                | 103919404.7<br>25/202021 7 | 1/2113430.7 |
| 30000/625 7              | 340776835 0               | 257815677 7               | 23727272721./              | 200557740.2 |
| JUJUJTUJJ./              | 5-10//0055.7              | 551015011.1 ,             | •                          |             |



GROUP 2 Table CH E 4273

| transcorn(i.kc) | transportation | costs from corn | market to | plant (\$ | per lb) |
|-----------------|----------------|-----------------|-----------|-----------|---------|
|                 | unisportation  |                 | mainet to | prane (\$ | per 10) |

|          | Pheoniz    | x Yuma       | Bakersfield | d Fresno                                | Napa       | Greeley |
|----------|------------|--------------|-------------|-----------------------------------------|------------|---------|
| Pueblo   | Louisville | Cedar-Rapids | s Dubuque   | Mountain                                | -Home Dan  | ville   |
| Peoria   | Quincy     | Evansville   | Fort-Wayne  | Meade                                   | Bastrop    | Denton  |
| Billings | Lexington  | Clovis       | Las-Cruces  | Roswell                                 | Cincinatti | Dayton  |
| Heppner  | Dumas      | El-Paso      | Yakima      |                                         |            |         |
| Annis    | ston 0.0   | 2717 0.03    | 001 0.034   | 08 0.03                                 | 461 0.03   | 510     |
| 0.02053  | 0.01969    | 0.00387      | 0.01248     | 0.01262                                 | 0.03150    | 0.00889 |
| 0.01014  | 0.01008    | 0.00614      | 0.00977     | 0.01624                                 | 0.00674    | 0.01273 |
| 0.02645  | 0.01732    | 0.02426      | 0.02209     | 0.01944                                 | 0.00745    | 0.00848 |
| 0.03520  | 0.01764    | 0.02167      | 0.03457     |                                         |            |         |
| Tusca    | aloosa 0.0 | 02540 0.02   | 2822 0.03   | 239 0.03                                | 0.03       | 3548    |
| 0.01920  | 0.01820    | 0.00575      | 0.01215     | 0.01248                                 | 0.03017    | 0.00918 |
| 0.01003  | 0.00962    | 0.00635      | 0.01054     | 0.01464                                 | 0.00476    | 0.01460 |
| 0.02541  | 0.01612    | 0.02252      | 0.02027     | 0.01857                                 | 0.00846    | 0.00949 |
| 0.03396  | 0.01590    | 0.01983      | 0.03531     |                                         |            |         |
| Gads     | den 0.0    | 0.02         | .980 0.033  | 0.03                                    | 431 0.03   | 480     |
| 0.02013  | 0.01935    | 0.00416      | 0.01190     | 0.01203                                 | 0.03109    | 0.00830 |
| 0.00955  | 0.00951    | 0.00555      | 0.00922     | 0.01589                                 | 0.00668    | 0.01254 |
| 0.02597  | 0.01685    | 0.02403      | 0.02193     | 0.01925                                 | 0.00693    | 0.00795 |
| 0.03477  | 0.01735    | 0.02152      | 0.03605     |                                         |            |         |
| Talla    | dega 0.0   | 2693 0.02    | .976 0.033  | 86 0.03                                 | 441 0.03   | 493     |
| 0.02039  | 0.01952    | 0.00411      | 0.01251     | 0.01269                                 | 0.03137    | 0.00901 |
| 0.01020  | 0.01009    | 0.00624      | 0.00997     | 0.01605                                 | 0.00645    | 0.01306 |
| 0.02637  | 0.01720    | 0.02403      | 0.02184     | 0.01919                                 | 0.00768    | 0.00871 |
| 0.03509  | 0.01742    | 0.02141      | 0.03447     |                                         |            |         |
| Hot-S    | Springs 0. | 01960 0.0    | 2246 0.02   | 650 0.02                                | 2707 0.02  | 2959    |
| 0.01433  | 0.01303    | 0.01185      | 0.00983     | 0.01069                                 | 0.02452    | 0.00945 |
| 0.00887  | 0.00745    | 0.00753      | 0.01185     | 0.00853                                 | 0.00261    | 0.01817 |
| 0.02034  | 0.01077    | 0.01756      | 0.01542     | 0.01256                                 | 0.01091    | 0.01170 |
| 0.02843  | 0.00969    | 0.01504      | 0.02986     |                                         |            |         |
| Los-A    | Angeles 0  | .00684 0.0   | 0.00        | 0.00000.0000000000000000000000000000000 | 0195 0.0   | 0348    |
| 0.01649  | 0.01560    | 0.03517      | 0.02775     | 0.02879                                 | 0.01205    | 0.03128 |
| 0.02936  | 0.02782    | 0.03124      | 0.03362     | 0.01855                                 | 0.02742    | 0.04043 |
| 0.01824  | 0.02010    | 0.00970      | 0.01265     | 0.01500                                 | 0.03419    | 0.03449 |
| 0.01479  | 0.01766    | 0.01338      | 0.01661     |                                         |            |         |
| Dubu     | que 0.0    | 02370 0.02   | 2650 0.023  | 873 0.02                                | 0.03       | 034     |
| 0.01396  | 0.01480    | 0.01505      | 0.00059     | 0.00000                                 | 0.02304    | 0.00421 |
| 0.00249  | 0.00326    | 0.00654      | 0.00570     | 0.01185                                 | 0.01272    | 0.01558 |
| 0.01737  | 0.00915    | 0.02072      | 0.02038     | 0.01864                                 | 0.00749    | 0.00721 |
| 0.02600  | 0.01433    | 0.02042      | 0.02691     |                                         |            |         |
| Ottun    | nwa 0.0    | 02160 0.02   | 2443 0.02   | 691 0.02                                | 2691 0.02  | 2876    |
| 0.01215  | 0.01270    | 0.01496      | 0.00063     | 0.00121                                 | 0.02180    | 0.00498 |

| GROUP 2 |              |             | CH E 427  | 3         |            |         |
|---------|--------------|-------------|-----------|-----------|------------|---------|
| 0.00281 | 0.00196      | 0.00639     | 0.00718   | 0.00950   | 0.01097    | 0.01703 |
| 0.01650 | 0.00726      | 0.01860     | 0.01814   | 0.01625   | 0.00837    | 0.00837 |
| 0.02500 | 0.01197      | 0.01815     | 0.02604   |           |            |         |
| Fort-   | Wayne 0.0    | 02815 0.    | 03101 0.  | .03371 0  | .03373 0.0 | 03557   |
| 0.01836 | 0.01880      | 0.01091     | 0.00651   | 0.00570   | 0.02843    | 0.00262 |
| 0.00448 | 0.00615      | 0.00227     | 0.00000   | 0.01619   | 0.01290    | 0.00990 |
| 0.02191 | 0.01444      | 0.02512     | 0.02422   | 0.02144   | 0.00253    | 0.00175 |
| 0.03141 | 0.01850      | 0.02411     | 0.03231   |           |            |         |
| South   | h-Bend 0.0   | 02732 0.0   | 03016 0.  | 03269 0.  | .03267 0.0 | 03444   |
| 0.01819 | 0.01879      | 0.01214     | 0.00528   | 0.00437   | 0.02720    | 0.00235 |
| 0.00360 | 0.00537      | 0.00248     | 0.00072   | 0.01537   | 0.01311    | 0.01120 |
| 0.02061 | 0.01332      | 0.02430     | 0.02357   | 0.02081   | 0.00380    | 0.00316 |
| 0.03013 | 0.01775      | 0.02350     | 0.03100   |           |            |         |
| Colu    | mbus 0.0     | 0.02715 0.0 | 03003 0.0 | 03307 0.  | 03321 0.0  | 3521    |
| 0.01893 | 0.01809      | 0.00903     | 0.00673   | 0.00630   | 0.02844    | 0.00211 |
| 0.00423 | 0.00544      | 0.00116     | 0.00119   | 0.01513   | 0.01065    | 0.01035 |
| 0.02227 | 0.01406      | 0.02411     | 0.02292   | 0.02013   | 0.00142    | 0.00190 |
| 0.03164 | 0.01730      | 0.02275     | 0.03266   |           |            |         |
| Mon     | roe 0.02     | 0.02        | 0.0       | 2812 0.0  | 2882 0.03  | 3146    |
| 0.01687 | 0.01533      | 0.01066     | 0.01231   | 0.01306   | 0.02683    | 0.01113 |
| 0.01099 | 0.00981      | 0.00873     | 0.01326   | 0.01091   | 0.00018    | 0.01826 |
| 0.02294 | 0.01354      | 0.01813     | 0.01650   | 0.01382   | 0.01183    | 0.01275 |
| 0.03081 | 0.01165      | 0.01600     | 0.03229   |           |            |         |
| Detro   | oit 0.030    | 0.033       | 0.03      | 579 0.03  | 572 0.035  | 544     |
| 0.02033 | 0.02100      | 0.01239     | 0.00849   | 0.00745   | 0.02997    | 0.00538 |
| 0.00695 | 0.00871      | 0.00731     | 0.00284   | 0.01872   | 0.01568    | 0.00860 |
| 0.02316 | 0.01656      | 0.02748     | 0.02674   | 0.02397   | 0.00454    | 0.00351 |
| 0.03272 | 0.02004      | 0.02666     | 0.03349   |           |            |         |
| Gran    | d-Rapids 0   | .02841 0    | .03123 0  | 0.03353 ( | 0.03342 0. | .03508  |
| 0.01805 | 0.01882      | 0.01338     | 0.00614   | 0.00505   | 0.02761    | 0.00408 |
| 0.00502 | 0.00680      | 0.00666     | 0.00249   | 0.01662   | 0.01484    | 0.01102 |
| 0.02080 | 0.01420      | 0.02541     | 0.02484   | 0.02211   | 0.00501    | 0.00412 |
| 0.03036 | 0.01810      | 0.02481     | 0.03114   |           |            |         |
| Kalaı   | mazoo 0.0    | 02814 0.0   | 03097 0.  | 03340 0   | .03333 0.0 | 03505   |
| 0.01889 | 0.01861      | 0.01264     | 0.00597   | 0.00496   | 0.02768    | 0.00338 |
| 0.00455 | 0.00633      | 0.00589     | 0.00173   | 0.01627   | 0.01412    | 0.01078 |
| 0.02097 | 0.01405      | 0.02513     | 0.02447   | 0.02171   | 0.00426    | 0.00342 |
| 0.03051 | 0.01867      | 0.02441     | 0.03134   |           |            |         |
| Minn    | neapolis 0.0 | 02305 0.0   | 02570 0.  | 02718 0.  | .02686 0.0 | 02823   |
| 0.01247 | 0.01403      | 0.01814     | 0.00420   | 0.00405   | 0.02045    | 0.00821 |
| 0.00650 | 0.00677      | 0.01058     | 0.00924   | 0.01226   | 0.01598    | 0.01877 |
| 0.01418 | 0.00830      | 0.02022     | 0.02057   | 0.01811   | 0.01134    | 0.01091 |
| 0.02303 | 0.01474      | 0.02076     | 0.02378   |           |            |         |
| St-Cl   | loud 0.02    | .282 0.02   | 2541 0.02 | 2665 0.0  | 2625 0.02  | 2751    |
| 0.01209 | 0.01387      | 0.01936     | 0.00540   | 0.00532   | 0.01960    | 0.00949 |
| 0.00777 | 0.00794      | 0.01184     | 0.01048   | 0.01252   | 0.01700    | 0.01892 |

| GROUP 2 |             |           | CH E 427 | 3         |           |         |
|---------|-------------|-----------|----------|-----------|-----------|---------|
| 0.01316 | 0.00827     | 0.02006   | 0.02063  | 0.01826   | 0.01262   | 0.01216 |
| 0.02205 | 0.01494     | 0.02087   | 0.02275  |           |           |         |
| Fergu   | s-Falls 0.0 | 0.0       | 2456 0.0 | 0.0 0.0   | 2495 0.0  | 2608    |
| 0.01120 | 0.01327     | 0.02108   | 0.00708  | 0.00716   | 0.01897   | 0.01136 |
| 0.00954 | 0.00952     | 0.01361   | 0.01242  | 0.01257   | 0.01823   | 0.02075 |
| 0.01138 | 0.00803     | 0.01942   | 0.02030  | 0.01809   | 0.01453   | 0.01410 |
| 0.02033 | 0.01487     | 0.02061   | 0.02098  |           |           |         |
| Mank    | ato 0.02    | 2198 0.02 | 2466 0.0 | 2627 0.02 | 2599 0.02 | 2745    |
| 0.01144 | 0.01290     | 0.01884   | 0.00370  | 0.00389   | 0.01981   | 0.00809 |
| 0.00619 | 0.00615     | 0.01024   | 0.00945  | 0.01106   | 0.01511   | 0.01822 |
| 0.01368 | 0.00714     | 0.01914   | 0.01944  | 0.01786   | 0.01137   | 0.01104 |
| 0.02255 | 0.01353     | 0.01963   | 0.02337  |           |           |         |
| Joplin  | n 0.022     | 49 0.025  | 37 0.028 | 0.028     | 70 0.030  | 80      |
| 0.01436 | 0.01424     | 0.01148   | 0.00438  | 0.00493   | 0.02438   | 0.00369 |
| 0.00282 | 0.00180     | 0.00329   | 0.00629  | 0.01023   | 0.00785   | 0.01522 |
| 0.01874 | 0.00962     | 0.01945   | 0.01832  | 0.01635   | 0.00629   | 0.00673 |
| 0.02783 | 0.01240     | 0.01818   | 0.02899  |           |           |         |
| Tupel   | lo 0.024    | 408 0.02  | 693 0.03 | 094 0.03  | 0.033     | 392     |
| 0.01841 | 0.01745     | 0.00716   | 0.01046  | 0.01087   | 0.02847   | 0.00789 |
| 0.00846 | 0.00789     | 0.00514   | 0.00959  | 0.01295   | 0.00396   | 0.01498 |
| 0.02365 | 0.01427     | 0.02115   | 0.01908  | 0.01725   | 0.00782   | 0.00880 |
| 0.03223 | 0.01434     | 0.01869   | 0.03356  |           |           |         |
| Green   | isboro 0.0  | )3291 0.0 | )3579 0. | 03728 0.0 | 0.0       | 3964    |
| 0.02471 | 0.02448     | 0.00484   | 0.01420  | 0.01372   | 0.03538   | 0.00957 |
| 0.01169 | 0.01270     | 0.00836   | 0.00841  | 0.02044   | 0.01366   | 0.00569 |
| 0.02935 | 0.02018     | 0.02991   | 0.02815  | 0.02540   | 0.00623   | 0.00668 |
| 0.03665 | 0.02220     | 0.02782   | 0.03764  |           | (22 0.02  | o       |
| Hicko   | ory $0.03$  | 0.03      | 437 0.03 | 3601 0.03 | 633 0.03  | 844     |
| 0.02351 | 0.02318     | 0.00378   | 0.01327  | 0.01290   | 0.03426   | 0.00869 |
| 0.01073 | 0.01158     | 0.00/13   | 0.00/94  | 0.01909   | 0.01207   | 0.00/16 |
| 0.02838 | 0.01902     | 0.02850   | 0.02669  | 0.02395   | 0.00554   | 0.00620 |
| 0.03566 | 0.02080     | 0.02635   | 0.03669  | 04205 0.0 | M202 0.0  | 4522    |
| Manc    | 0.021(4)    | 0.01729   | 0.010(0) | 04395 0.0 | 0.02001   | 0.01(27 |
| 0.03091 | 0.03164     | 0.01728   | 0.01868  | 0.01859   | 0.03801   | 0.0162/ |
| 0.01809 | 0.01882     | 0.01/29   | 0.01367  | 0.02836   | 0.02374   | 0.00686 |
| 0.03300 | 0.02635     | 0.03608   | 0.03523  | 0.03440   | 0.0138/   | 0.01320 |
| 0.04027 | 0.0305/     | 0.03510   | 0.04080  | 222 0.04  |           | 160     |
| Keene   | e 0.038     | 821 0.040 | 0.04     | 0.01779   | 0.02721   | +60     |
| 0.03014 | 0.03080     | 0.016/0   | 0.01296  | 0.01//8   | 0.03/31   | 0.01340 |
| 0.01/2/ | 0.01900     | 0.01650   | 0.01280  | 0.02/39   | 0.02303   | 0.00033 |
| 0.03228 | 0.020070    | 0.03535   | 0.03450  | 0.03363   | 0.01308   | 0.01240 |
| U.U3939 | 0.029/9     | 0.0343/   | 0.04013  | 2402 0.0  | 2401 0.02 | 2660    |
| 0 02147 | 0.02107     | 0.01105   | 0.00020  | 0.0075    | 0.02122   | 0.000   |
| 0.0214/ | 0.02197     | 0.01103   | 0.00909  | 0.000/3   | 0.03133   | 0.00393 |
| 0.00/02 | 0.00221     | 0.00123   | 0.00555  | 0.01000   | 0.01040   | 0.00020 |

| GROUP 2            |                                                                    |          | CH E 427         | 3                |              |         |
|--------------------|--------------------------------------------------------------------|----------|------------------|------------------|--------------|---------|
| 0.02462            | 0.01772                                                            | 0.02830  | 0.02737          | 0.02458          | 0.00199      | 0.00154 |
| 0.03417            | 0.02075                                                            | 0.02724  | 0.03498          |                  |              |         |
| Dayte              | on 0.02                                                            | 885 0.03 | <b>3173</b> 0.03 | <b>3466</b> 0.0  | 0.03         | 475     |
| 0.01945            | 0.01969                                                            | 0.00927  | 0.00787          | 0.00721          | 0.02972      | 0.00343 |
| 0.00557            | 0.00704                                                            | 0.00417  | 0.00175          | 0.01691          | 0.01240      | 0.00869 |
| 0.02334            | 0.01558                                                            | 0.02582  | 0.02470          | 0.02190          | 0.00052      | 0.00000 |
| 0.03280            | 0.01817                                                            | 0.02453  | 0.03374          |                  |              |         |
| Toleo              | do 0.02                                                            | 958 0.03 | 0.03             | 503 0.0          | 3502 0.03·   | 485     |
| 0.01963            | 0.02017                                                            | 0.01140  | 0.00775          | 0.00682          | 0.02951      | 0.00420 |
| 0.00595            | 0.00767                                                            | 0.00600  | 0.00159          | 0.01771          | 0.01436      | 0.00882 |
| 0.02283            | 0.01579                                                            | 0.02655  | 0.02571          | 0.02293          | 0.00165      | 0.00114 |
| 0.03237            | 0.01905                                                            | 0.02561  | 0.03321          |                  |              |         |
| Your               | ngstown 0                                                          | .03241 0 | 0.03528 0        | 0.03597          | 0.03597 0    | .03766  |
| 0.02259            | 0.02307                                                            | 0.01101  | 0.01087          | 0.00993          | 0.03245      | 0.00704 |
| 0.00898            | 0.01064                                                            | 0.00813  | 0.00450          | 0.01963          | 0.01621      | 0.00585 |
| 0.02571            | 0.01890                                                            | 0.02938  | 0.02839          | 0.02560          | 0.00238      | 0.00199 |
| 0.03526            | 0.02180                                                            | 0.02825  | 0.03606          |                  |              |         |
| Findl              | ay 0.029                                                           | 958 0.03 | 244 0.03         | 515 0.0          | 3518 0.03    | 505     |
| 0.01980            | 0.02024                                                            | 0.01062  | 0.00799          | 0.00713          | 0.02982      | 0.00407 |
| 0.00600            | 0.00766                                                            | 0.00553  | 0.00152          | 0.01768          | 0.01386      | 0.00844 |
| 0.02323            | 0.01596                                                            | 0.02654  | 0.02560          | 0.02281          | 0.00130      | 0.00078 |
| 0.03275            | 0.01898                                                            | 0.02547  | 0.03362          | NAO 0.0 <b>0</b> |              | 07      |
| I UIS              | 0.001/                                                             | /4 0.015 | 0.023            | 0.02             | 0.026        | 0.01005 |
| 0.01058            | 0.00939                                                            | 0.01518  | 0.00861          | 0.009/1          | 0.02097      | 0.01005 |
| 0.00868            | 0.00692                                                            | 0.00909  | 0.01266          | 0.00489          | 0.00625      | 0.02017 |
| 0.01//4            | 0.00/19                                                            | 0.01458  | 0.01301          | 0.01007          | 0.01245      | 0.01302 |
| 0.02480<br>Euro    | 0.00040                                                            | 0.01281  | 0.02030          | 0.0              | 1027 0.00    | 701     |
|                    | 0.01909                                                            | 0.02051  | 0.02973          | 0.02045          | 0.00711      | 0.02206 |
| 0.01000            | 0.01898                                                            | 0.03931  | 0.02873          | 0.02943          | 0.00711      | 0.03300 |
| 0.05100            | 0.02993                                                            | 0.03414  | 0.03460          | 0.02319          | 0.03347      | 0.04191 |
| 0.01301            | 0.02194                                                            | 0.01807  | 0.02108          | 0.02238          | 0.03439      | 0.03431 |
| 0.00191<br>Medf    | $\begin{array}{c} 0.02271 \\ \text{ford} & 0.02271 \\ \end{array}$ | 1623 0.0 | 1538 0.0         | 0003 0           | 0.0802 0.00  | 1540    |
| 0.01812            | 0.01818                                                            | 0.03906  | 0.02870          | 0.02948          | 0.0002 0.00  | 0.03296 |
| 0.01012            | 0.02975                                                            | 0.03387  | 0.02870          | 0.02748          | 0.03268      | 0.03290 |
| 0.01474            | 0.02773                                                            | 0.03387  | 0.02016          | 0.02244          | 0.03428      | 0.03426 |
| 0.01424<br>0.00250 | 0.02102                                                            | 0.01/43  | 0.00594          | 0.02120          | 0.03420      | 0.05420 |
| Greet              | 0.02175                                                            | 3072 0.0 | 3359 0.0         | 3541 0.0         | 0.03580 0.03 | 3797    |
| 0.02313            | 0.02266                                                            | 0.00250  | 0.01339          | 0.01314          | 0.03398      | 0.00894 |
| 0.01084            | 0.01148                                                            | 0.00698  | 0.00859          | 0.01850          | 0 01093      | 0.00855 |
| 0.02831            | 0.01873                                                            | 0.02776  | 0.02582          | 0.02311          | 0.00608      | 0.00689 |
| 0.03548            | 0.02011                                                            | 0.02545  | 0.03657          | <b>.</b>         |              | 0.00000 |
| Dalla              | us 0.016                                                           | 69 0.01  | 863 0.02         | 311 0.02         | 2388 0.026   | 60      |
| 0.01290            | 0.01085                                                            | 0.01593  | 0.01303          | 0.01408          | 0.02257      | 0.01372 |
| 0.01274            | 0.01107                                                            | 0.01208  | 0.01624          | 0.00690          | 0.00547      | 0.02255 |

| GROUP 2         CH E 4273           0.01967         0.01084         0.01378         0.01117         0.00848         0.01549         0.01624           0.02669         0.00340         0.00535         0.02292         0.02369         0.02641           0.01278         0.01071         0.01615         0.01313         0.01419         0.02243         0.01389           0.01288         0.01121         0.01227         0.01641         0.00826         0.01568         0.01643           0.02655         0.0032         0.00523         0.02416         0.02404         0.02685           0.01400         0.01176         0.01654         0.01482         0.02404         0.02685           0.01400         0.01176         0.01654         0.01277         0.01371         0.02460         0.01521           0.01430         0.01232         0.01381         0.01085         0.00841         0.0610         0.02360           0.02746         0.00380         0.00213         0.02911         Longview         0.01813         0.02026         0.01265         0.01295         0.01264         0.01277         0.01371         0.02460         0.01265           0.02128         0.01161         0.01573         0.01087         0.00316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |             |                      |                                       |            |           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|----------------------|---------------------------------------|------------|-----------|---------|
| 0.01967 0.01084 0.01378 0.01117 0.00848 0.01549 0.01624<br>0.02669 0.00340 0.00535 0.02828<br>Ft-Worth 0.01648 0.01843 0.02292 0.02369 0.02641<br>0.01278 0.01071 0.01615 0.01313 0.01419 0.02243 0.01389<br>0.01288 0.01121 0.01227 0.01641 0.00680 0.00569 0.02275<br>0.01958 0.01080 0.01357 0.01095 0.00826 0.01568 0.01643<br>0.02655 0.00332 0.00523 0.02815<br>Waco 0.01656 0.01842 0.02316 0.02404 0.02685<br>0.01400 0.01176 0.01654 0.01468 0.01572 0.02330 0.01521<br>0.01432 0.01282 0.01331 0.01085 0.00841 0.01680 0.01759<br>0.02746 0.00380 0.00513 0.02911<br>Longview 0.01813 0.02089 0.02539 0.02615 0.02884<br>0.01478 0.01295 0.01364 0.01377 0.01371 0.02460 0.01265<br>0.01202 0.01052 0.01656 0.01503 0.00873 0.00316 0.02078<br>0.02128 0.01212 0.01618 0.01352 0.01087 0.00316 0.02078<br>0.02128 0.01212 0.01618 0.01352 0.01087 0.01397 0.01481<br>0.02867 0.00452 0.00650 0.03022<br>Lufkin 0.01830 0.02100 0.02569 0.02653 0.02930<br>0.01579 0.01380 0.01394 0.01414 0.01506 0.02538 0.01385<br>0.02340 0.01360 0.01878 0.02306 0.02375 0.02640<br>0.02244 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02349 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01244 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01149 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01240 0.01336 0.01879 0.01317 0.03125 0.01290<br>0.01579 0.0318 0.00552 0.02940 0.02305 0.02194<br>0.02848 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01241 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01672 0.01760 0.01426 0.00394 0.00200 0.02545 0.00363<br>0.0244 0.00631 0.01539<br>0.02645 0.00368 0.01456 0.01401 0.01318<br>0.01890 0.01579 0.0318 0.00552 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00213 0.00574 0.00363<br>0.00347 0.00511 0.00645 0.00368 0.01456 0.01468 0.01539<br>0.01682 0.01931 0.02284 0.02921<br>Green-Bay 0.02683 0.02911 0.03138 0.03122 0.03295<br>0.01674 0.01757 0.01396 0.0390 0.00279 0.02555 0.00332<br>0.00553 0.00564 0.00481 0.00344 0.01447 0.01373 0.00515<br>0.00583 0.01587 0.01418<br>0.00844 0.01223 0 | GROUP 2          |             |                      | CH E 427                              | 3          |           |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01967          | 0.01084     | 0.01378              | 0.01117                               | 0.00848    | 0.01549   | 0.01624 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02669          | 0.00340     | 0.00535              | 0.02828                               |            |           |         |
| 0.01278 0.01071 0.01615 0.01313 0.01419 0.02243 0.01389<br>0.01288 0.01121 0.01227 0.01641 0.00680 0.00569 0.02275<br>0.01958 0.01080 0.01357 0.01095 0.00826 0.01568 0.01643<br>0.02655 0.00332 0.00523 0.02815<br>Waco 0.01656 0.01842 0.02316 0.02404 0.02685<br>0.01400 0.01176 0.01654 0.01468 0.01572 0.02330 0.01521<br>0.01432 0.01282 0.01381 0.01085 0.00841 0.01680 0.01759<br>0.02746 0.00380 0.00513 0.02911<br>Longview 0.01813 0.02089 0.02539 0.02615 0.02884<br>0.01478 0.01295 0.01364 0.01503 0.00873 0.00316 0.02078<br>0.01228 0.01212 0.01656 0.01352 0.01087 0.01397 0.01481<br>0.02867 0.00452 0.00650 0.03022<br>Lufkin 0.01830 0.01414 0.01506 0.02538 0.02184<br>0.01579 0.01380 0.01414 0.01506 0.02538 0.01385<br>0.01331 0.01185 0.01172 0.01617 0.00974 0.00368 0.02149<br>0.02234 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02244 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02206 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.01244 0.0126 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.01886 0.00981 0.01379 0.01144 0.00280 0.02545 0.00363<br>0.02475 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01672 0.01760 0.01426 0.00368 0.01456 0.01406 0.01318<br>0.0263 0.0294 0.00318 0.00529 0.02778<br>Milwaukee 0.0263 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00368 0.01456 0.01401 0.01318<br>0.01870 0.01194 0.02336 0.02294 0.02024 0.00601 0.00541<br>0.0284 0.00312 0.00529 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.02294 0.02024 0.00601 0.00541<br>0.02838 0.01194 0.02331 0.02284 0.02013 0.00574 0.00555<br>0.00323 0.00566 0.00848 0.00538 0.01329 0.00555<br>0.00324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.00848 0.01538 0.01329 0.00555 0.00326<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00555<br>0.00523 0.00566 0.00848 0.00538 0.01359 0.01587 0.01418<br>0.01894 0.01223 0.02390 0.023     | Ft-Wo            | orth 0.01   | 648 0.01             | 0.0                                   | 2292 0.02  | 0.02      | 2641    |
| 0.01288 0.01121 0.01227 0.01641 0.00680 0.00569 0.02275<br>0.01958 0.01080 0.01357 0.01095 0.00826 0.01568 0.01643<br>0.02655 0.00332 0.00523 0.02815<br>Waco 0.01656 0.01842 0.02316 0.02404 0.02685<br>0.01400 0.01176 0.01654 0.01468 0.01572 0.02330 0.01521<br>0.01432 0.01268 0.01342 0.01769 0.00814 0.00610 0.02360<br>0.02081 0.01232 0.01381 0.01085 0.00841 0.01680 0.01759<br>0.02746 0.00380 0.00513 0.02911<br>Longview 0.01813 0.02089 0.02539 0.02615 0.02884<br>0.01478 0.01295 0.01364 0.01277 0.01371 0.02460 0.01265<br>0.01202 0.01052 0.0165 0.01503 0.00873 0.00316 0.02078<br>0.02128 0.01212 0.01618 0.01352 0.01087 0.01397 0.01481<br>0.02867 0.00452 0.00650 0.03022<br>Lufkin 0.01830 0.02100 0.02569 0.02653 0.02930<br>0.01579 0.01380 0.01394 0.01414 0.01506 0.02538 0.01385<br>0.01331 0.01185 0.01172 0.01617 0.00974 0.00368 0.02149<br>0.02249 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01187 0.01371 0.02197 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.02845 0.00981 0.01379 0.01144 0.00864 0.01468 0.01599<br>0.02612 0.00318 0.001379 0.01144 0.00266 0.02545 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.0224 0.00601 0.00541<br>0.01886 0.00981 0.01379 0.01144 0.00280 0.02545 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.0224 0.00601 0.00541<br>0.01870 0.01194 0.02336 0.02294 0.02024 0.00601 0.00541<br>0.01870 0.01194 0.02336 0.02294 0.02024 0.00601 0.00541<br>0.02825 0.01703 0.02295 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00394 0.01447 0.01373 0.01303<br>0.01883 0.01194 0.02331 0.02284 0.02013 0.00574 0.00515<br>0.02838 0.01693 0.02294 0.02241 0.00159 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00555<br>0.00523 0.00566 0.00384 0.00358 0.01539 0.01539 0.01547<br>0.003269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565<br>0.00523 0.01539 0.0254 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565 0.00523 0.00566 0.00548 0.00538 0.01549 0.0555 0.00532         | 0.01278          | 0.01071     | 0.01615              | 0.01313                               | 0.01419    | 0.02243   | 0.01389 |
| 0.01958 0.01080 0.01357 0.01095 0.00826 0.01568 0.01643<br>0.02655 0.00332 0.00523 0.02815<br>Waco 0.01656 0.01842 0.02316 0.02404 0.02685<br>0.01400 0.01176 0.01654 0.01468 0.01572 0.02330 0.01521<br>0.01432 0.01268 0.01342 0.01769 0.00814 0.00610 0.02360<br>0.02081 0.01232 0.01381 0.01085 0.00841 0.01680 0.01759<br>0.02746 0.00380 0.00513 0.02911<br>Longview 0.01813 0.02089 0.02539 0.02615 0.02884<br>0.01478 0.01295 0.01364 0.01277 0.01371 0.02460 0.01265<br>0.01202 0.01052 0.01065 0.01503 0.00873 0.00316 0.02078<br>0.02128 0.01212 0.01618 0.01352 0.01087 0.01397 0.01481<br>0.02867 0.00452 0.00650 0.03022<br>Lufkin 0.01830 0.02100 0.02569 0.02653 0.02930<br>0.01579 0.01380 0.01394 0.01414 0.01506 0.02538 0.01385<br>0.0234 0.01364 0.01617 0.00374 0.00368 0.02149<br>0.02234 0.0136 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00339 0.02194<br>0.02612 0.00318 0.00552 0.02768<br>Milwaukee 0.02635 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00280 0.02545 0.03290<br>0.01674 0.01757 0.01396 0.00294 0.00204 0.00601 0.00541<br>0.02825 0.01703 0.02295 0.02917<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00390 0.00279 0.02555 0.00332<br>0.00324 0.00491 0.00645 0.00394 0.03145 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00394 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00394 0.03145 0.03128 0.03512<br>0.03269<br>0.01682 0.01801 0.01618 0.00483 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00555<br>0.00523 0.00566 0.00848 0.00358 0.01359 0.01537 0.01418<br>0.01894 0.01223 0.02390 0.     | 0.01288          | 0.01121     | 0.01227              | 0.01641                               | 0.00680    | 0.00569   | 0.02275 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01958          | 0.01080     | 0.01357              | 0.01095                               | 0.00826    | 0.01568   | 0.01643 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02655          | 0.00332     | 0.00523              | 0.02815                               |            |           |         |
| 0.01400         0.01176         0.01654         0.01468         0.01572         0.02330         0.01521           0.01432         0.01268         0.01342         0.01769         0.00814         0.00610         0.02360           0.02081         0.01232         0.01381         0.01085         0.00841         0.01680         0.01759           0.02746         0.00380         0.00513         0.02911         0.02460         0.01285           0.01478         0.01295         0.01364         0.01277         0.01371         0.02460         0.01265           0.01202         0.01052         0.01655         0.01503         0.00873         0.00316         0.02078           0.02128         0.01212         0.01618         0.01352         0.01087         0.01397         0.01481           0.02867         0.00452         0.00650         0.03022         0.01579         0.01380         0.01394         0.01617         0.00974         0.00368         0.02149           0.01330         0.01477         0.01367         0.01498         0.01585         0.02245         0.00368         0.02149           0.02234         0.01360         0.01878         0.02306         0.02375         0.02640           0.0124 </td <td>Waco</td> <td>0.010</td> <td>656 0.01</td> <td>842 0.02</td> <td>.316 0.024</td> <td>404 0.026</td> <td>685</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Waco             | 0.010       | 656 0.01             | 842 0.02                              | .316 0.024 | 404 0.026 | 685     |
| 0.01432 0.01268 0.01342 0.01769 0.00814 0.00610 0.02360<br>0.02081 0.01232 0.01381 0.01085 0.00841 0.01680 0.01759<br>0.02746 0.00380 0.00513 0.02911<br>Longview 0.01813 0.02089 0.02539 0.02615 0.02884<br>0.01478 0.01295 0.01364 0.01277 0.01371 0.02460 0.01265<br>0.01202 0.01052 0.01065 0.01503 0.00873 0.00316 0.02078<br>0.02128 0.01212 0.01618 0.01352 0.01087 0.01397 0.01481<br>0.02867 0.00452 0.00650 0.03022<br>Lufkin 0.01830 0.02100 0.02569 0.02653 0.02930<br>0.01579 0.01380 0.01394 0.01414 0.01506 0.02538 0.01385<br>0.01331 0.01185 0.01172 0.01617 0.00974 0.00368 0.02149<br>0.02234 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.02612 0.00318 0.00552 0.02768<br>Milwaukee 0.02635 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00280 0.02545 0.00363<br>0.02947 0.00511 0.00645 0.00368 0.01456 0.01401 0.01318<br>0.01876 0.01194 0.02336 0.02949 0.02024 0.00601 0.01519<br>0.02825 0.01703 0.02295 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00394 0.00280 0.02545 0.00363<br>0.00347 0.00511 0.00645 0.00368 0.01456 0.01401 0.01318<br>0.01870 0.01194 0.02336 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00390 0.00279 0.02555 0.00332<br>0.00324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.01883 0.01194 0.02331 0.02284 0.02013 0.00574 0.00515<br>0.02838 0.01693 0.02284 0.0291<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565<br>0.00523 0.00666 0.00848 0.00538 0.01539 0.01587 0.01418<br>0.01894 0.01223 0.02390 0.02376 0.02111 0.00785 0.00713                                                                                                                                                                                                                                                                                                     | 0.01400          | 0.01176     | 0.01654              | 0.01468                               | 0.01572    | 0.02330   | 0.01521 |
| 0.02081 0.01232 0.01381 0.01085 0.00841 0.01680 0.01759<br>0.02746 0.00380 0.00513 0.02911<br>Longview 0.01813 0.02089 0.02539 0.02615 0.02884<br>0.01478 0.01295 0.01364 0.01277 0.01371 0.02460 0.01265<br>0.01202 0.01052 0.01065 0.01503 0.00873 0.00316 0.02078<br>0.02128 0.01212 0.01618 0.01352 0.01087 0.01397 0.01481<br>0.02867 0.00452 0.00650 0.03022<br>Lufkin 0.01830 0.02100 0.02569 0.02653 0.02930<br>0.01579 0.01380 0.01394 0.01414 0.01506 0.02538 0.01385<br>0.01331 0.01185 0.0172 0.01617 0.00974 0.00368 0.02149<br>0.02234 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.01886 0.00981 0.01379 0.01144 0.00864 0.01468 0.01539<br>0.02612 0.00318 0.00552 0.02768<br>Milwaukee 0.02635 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00280 0.02545 0.00363<br>0.00347 0.00511 0.00645 0.00368 0.01456 0.01401 0.01318<br>0.01870 0.01194 0.02336 0.02294 0.02024 0.00601 0.00541<br>0.02825 0.01703 0.02295 0.02907<br>Racine 0.02633 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00394 0.00279 0.02555 0.00332<br>0.00324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.01833 0.01194 0.02331 0.02284 0.02013 0.00574 0.00551<br>0.02838 0.01693 0.02284 0.0291<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00357 0.02498 0.00565<br>0.00553 0.00256 0.02917<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00433 0.00367 0.02498 0.00565<br>0.00553 0.00558 0.02917<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00357 0.02498 0.00565<br>0.00553 0.00565 0.00558 0.00558 0.00558 0.00555 0.00555<br>0.00555 0.00555 0.00555 0.00555 0.00555<br>0.00553 0.00566 0.00848 0.00538 0.01539 0.01587 0.01418<br>0.01894 0.01223 0.02390 0.02376 0.02111 0.00785 0.00713                                                                                                                     | 0.01432          | 0.01268     | 0.01342              | 0.01769                               | 0.00814    | 0.00610   | 0.02360 |
| 0.02746 0.00380 0.00513 0.02911<br>Longview 0.01813 0.02089 0.02539 0.02615 0.02884<br>0.01478 0.01295 0.01364 0.01277 0.01371 0.02460 0.01265<br>0.01202 0.01052 0.01065 0.01503 0.00873 0.00316 0.02078<br>0.02128 0.01212 0.01618 0.01352 0.01087 0.01397 0.01481<br>0.02867 0.00452 0.00650 0.03022<br>Lufkin 0.01830 0.02100 0.02569 0.02653 0.02930<br>0.01579 0.01380 0.01394 0.01414 0.01506 0.02538 0.01385<br>0.01331 0.01185 0.01172 0.01617 0.00974 0.00368 0.02149<br>0.02234 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.01886 0.00981 0.01379 0.01144 0.00864 0.01468 0.01539<br>0.02612 0.00318 0.00552 0.02768<br>Milwaukee 0.02635 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00280 0.02545 0.00363<br>0.00347 0.00511 0.00645 0.00368 0.01456 0.01401 0.01318<br>0.01870 0.01194 0.02336 0.02994 0.02024 0.00601 0.00541<br>0.01883 0.0194 0.02336 0.0294 0.02024 0.00601 0.00541<br>0.01883 0.0194 0.02336 0.0294 0.02024 0.00601 0.00541<br>0.01883 0.0194 0.02295 0.02917<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00390 0.00279 0.02555 0.00363<br>0.0324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.01883 0.01194 0.02331 0.02284 0.02013 0.00574 0.00541<br>0.02838 0.01693 0.02284 0.02911<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01672 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565<br>0.00324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.01883 0.01194 0.02331 0.02284 0.02013 0.00574 0.00515<br>0.02838 0.01693 0.02284 0.02911<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565<br>0.00523 0.00666 0.00848 0.00538 0.01539 0.01587 0.01418<br>0.01894 0.01223 0.02390 0.02376 0.02111 0.00785 0.00713                                                                                                                                                                                 | 0.02081          | 0.01232     | 0.01381              | 0.01085                               | 0.00841    | 0.01680   | 0.01759 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02746          | 0.00380     | 0.00513              | 0.02911                               |            |           |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Longv            | view $0.0$  | 1813 0.0             | 2089 0.0                              | 02539 0.0  | 2615 0.0  | 2884    |
| 0.01202       0.01052       0.01065       0.01503       0.00873       0.00316       0.02078         0.02128       0.01212       0.01618       0.01352       0.01087       0.01397       0.01481         0.02867       0.00452       0.00650       0.03022       0.01579       0.01380       0.01394       0.01414       0.01506       0.02538       0.02930         0.01579       0.01380       0.01172       0.01617       0.00974       0.00368       0.02149         0.02234       0.01336       0.01647       0.01357       0.01108       0.01498       0.01585         0.02949       0.00488       0.00649       0.03108       0.01297       0.02205       0.01276         0.01169       0.01000       0.01126       0.01531       0.00609       0.00539       0.02194         0.01886       0.00981       0.01379       0.01144       0.00864       0.01468       0.01539         0.02612       0.00318       0.00552       0.02768       0.03290       0.02545       0.00363         Milwaukee       0.02635       0.02915       0.03137       0.03125       0.03290         0.01672       0.01760       0.01426       0.00394       0.002024       0.00601       0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01478          | 0.01295     | 0.01364              | 0.01277                               | 0.01371    | 0.02460   | 0.01265 |
| 0.02128         0.01212         0.01618         0.01352         0.01087         0.01397         0.01481           0.02867         0.00452         0.00650         0.03022         0.02569         0.02653         0.02930           0.01579         0.01380         0.01394         0.01414         0.01506         0.02538         0.01385           0.01231         0.01185         0.01617         0.00974         0.00368         0.02149           0.02234         0.01336         0.01647         0.01357         0.01108         0.01498         0.01585           0.02949         0.00488         0.00649         0.03108         0.02205         0.01276           Sherman         0.01026         0.01578         0.02306         0.02375         0.02640           0.01169         0.01000         0.01126         0.01297         0.02205         0.01276           0.01169         0.01000         0.01126         0.01313         0.00609         0.00539         0.02194           0.01672         0.01760         0.01426         0.00394         0.00280         0.02545         0.00363           0.01870         0.01194         0.02336         0.02294         0.02024         0.00601         0.00541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01202          | 0.01052     | 0.01065              | 0.01503                               | 0.00873    | 0.00316   | 0.02078 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02128          | 0.01212     | 0.01618              | 0.01352                               | 0.01087    | 0.01397   | 0.01481 |
| Lufkin $0.01830$ $0.02100$ $0.02569$ $0.02653$ $0.02930$ $0.01579$ $0.01380$ $0.01394$ $0.01414$ $0.01506$ $0.02538$ $0.01385$ $0.01331$ $0.01185$ $0.01172$ $0.01617$ $0.00974$ $0.00368$ $0.02149$ $0.02234$ $0.01336$ $0.01647$ $0.01357$ $0.01108$ $0.01498$ $0.01585$ $0.02949$ $0.00488$ $0.00649$ $0.03108$ $0.01297$ $0.02205$ $0.01276$ Sherman $0.01680$ $0.01878$ $0.02306$ $0.02375$ $0.02640$ $0.01214$ $0.01026$ $0.01568$ $0.01190$ $0.01297$ $0.02205$ $0.01276$ $0.01680$ $0.01878$ $0.02306$ $0.00539$ $0.02194$ $0.0169$ $0.01000$ $0.01126$ $0.01531$ $0.00609$ $0.00539$ $0.02194$ $0.02612$ $0.00318$ $0.00552$ $0.02768$ $0.03125$ $0.03290$ $0.01672$ $0.01760$ $0.01426$ $0.00394$ $0.00280$ $0.02545$ $0.00363$ $0.00347$ $0.00511$ $0.00645$ $0.00394$ $0.00224$ $0.00601$ $0.00541$ $0.02825$ $0.01703$ $0.02295$ $0.02907$ $0.02555$ $0.00332$ $0.00324$ $0.00491$ $0.00614$ $0.00344$ $0.01447$ $0.01373$ $0.01303$ $0.01674$ $0.01757$ $0.01396$ $0.00390$ $0.00279$ $0.02555$ $0.00332$ $0.00288$ $0.01693$ $0.02284$ $0.02013$ $0.00574$ $0.00515$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02867          | 0.00452     | 0.00650              | 0.03022                               |            |           |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lufki            | n 0.018     | 0.021                | 0.02                                  | 569 0.026  | 553 0.029 | 930     |
| 0.01331 0.01185 0.01172 0.01617 0.00974 0.00368 0.02149<br>0.02234 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.01886 0.00981 0.01379 0.01144 0.00864 0.01468 0.01539<br>0.02612 0.00318 0.00552 0.02768<br>Milwaukee 0.02635 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00280 0.02545 0.00363<br>0.00347 0.00511 0.00645 0.00368 0.01456 0.01401 0.01318<br>0.01870 0.01194 0.02336 0.02294 0.02024 0.00601 0.00541<br>0.02825 0.01703 0.02295 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00390 0.00279 0.02555 0.00332<br>0.00324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.01883 0.01194 0.02331 0.02284 0.02013 0.00574 0.00515<br>0.02838 0.01693 0.02284 0.02921<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565<br>0.00523 0.00666 0.00848 0.00538 0.01539 0.01587 0.01418<br>0.01894 0.01223 0.02390 0.02376 0.02111 0.00785 0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01579          | 0.01380     | 0.01394              | 0.01414                               | 0.01506    | 0.02538   | 0.01385 |
| 0.02234 0.01336 0.01647 0.01357 0.01108 0.01498 0.01585<br>0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.01886 0.00981 0.01379 0.01144 0.00864 0.01468 0.01539<br>0.02612 0.00318 0.00552 0.02768<br>Milwaukee 0.02635 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00280 0.02545 0.00363<br>0.00347 0.00511 0.00645 0.00368 0.01456 0.01401 0.01318<br>0.01870 0.01194 0.02336 0.02294 0.02024 0.00601 0.00541<br>0.02825 0.01703 0.02295 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00390 0.00279 0.02555 0.00332<br>0.00324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.01883 0.01194 0.02331 0.02284 0.02013 0.00574 0.00515<br>0.02838 0.01693 0.02294 0.02921<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565<br>0.00523 0.00666 0.00848 0.00538 0.01539 0.01587 0.01418<br>0.01894 0.01223 0.02390 0.02376 0.02111 0.00785 0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01331          | 0.01185     | 0.01172              | 0.01617                               | 0.00974    | 0.00368   | 0.02149 |
| 0.02949 0.00488 0.00649 0.03108<br>Sherman 0.01680 0.01878 0.02306 0.02375 0.02640<br>0.01214 0.01026 0.01568 0.01190 0.01297 0.02205 0.01276<br>0.01169 0.01000 0.01126 0.01531 0.00609 0.00539 0.02194<br>0.01886 0.00981 0.01379 0.01144 0.00864 0.01468 0.01539<br>0.02612 0.00318 0.00552 0.02768<br>Milwaukee 0.02635 0.02915 0.03137 0.03125 0.03290<br>0.01672 0.01760 0.01426 0.00394 0.00280 0.02545 0.00363<br>0.00347 0.00511 0.00645 0.00368 0.01456 0.01401 0.01318<br>0.01870 0.01194 0.02336 0.02294 0.02024 0.00601 0.00541<br>0.02825 0.01703 0.02295 0.02907<br>Racine 0.02630 0.02911 0.03138 0.03128 0.03295<br>0.01674 0.01757 0.01396 0.00390 0.00279 0.02555 0.00332<br>0.00324 0.00491 0.00614 0.00344 0.01447 0.01373 0.01303<br>0.01883 0.01194 0.02331 0.02284 0.02013 0.00574 0.00515<br>0.02838 0.01693 0.02284 0.02921<br>Green-Bay 0.02683 0.02958 0.03145 0.03122 0.03269<br>0.01682 0.01801 0.01618 0.00483 0.00367 0.02498 0.00565<br>0.00523 0.00666 0.00848 0.00538 0.01539 0.01587 0.01418<br>0.01894 0.01223 0.02390 0.02376 0.02111 0.00785 0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02234          | 0.01336     | 0.01647              | 0.01357                               | 0.01108    | 0.01498   | 0.01585 |
| Sherman         0.01680         0.01878         0.02306         0.02375         0.02640           0.01214         0.01026         0.01568         0.01190         0.01297         0.02205         0.01276           0.01169         0.01000         0.01126         0.01531         0.00609         0.00539         0.02194           0.01886         0.00981         0.01379         0.01144         0.00864         0.01468         0.01539           0.02612         0.00318         0.00552         0.02768         0.03137         0.03125         0.03290           0.01672         0.01760         0.01426         0.00394         0.00280         0.02545         0.00363           0.00347         0.00511         0.00645         0.00368         0.01456         0.01401         0.01318           0.01870         0.01194         0.02336         0.02294         0.02024         0.00601         0.00541           0.02825         0.01703         0.02295         0.02907           0.03138         0.03128         0.03295           0.01674         0.01757         0.01396         0.00390         0.00279         0.02555         0.00332           0.00324         0.00491         0.00614         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02949          | 0.00488     | 0.00649              | 0.03108                               |            |           |         |
| 0.01214       0.01026       0.01568       0.01190       0.01297       0.02205       0.01276         0.01169       0.01000       0.01126       0.01531       0.00609       0.00539       0.02194         0.01886       0.00981       0.01379       0.01144       0.00864       0.01468       0.01539         0.02612       0.00318       0.00552       0.02768       0.03137       0.03125       0.03290         0.01672       0.01760       0.01426       0.00394       0.00280       0.02545       0.00363         0.00347       0.00511       0.00645       0.00368       0.01456       0.01401       0.01318         0.01870       0.01194       0.02336       0.02294       0.02024       0.00601       0.00541         0.02825       0.01703       0.02295       0.0279       0.02555       0.00332         0.01674       0.01757       0.01396       0.00390       0.00279       0.02555       0.00332         0.00324       0.00491       0.00614       0.00344       0.01447       0.01373       0.01303         0.01883       0.01693       0.02284       0.02921       0.03122       0.03269         Green-Bay       0.02683       0.02958       0.03145 <td>Sherm</td> <td>1an = 0.01</td> <td>1680 0.0</td> <td>1878 0.0</td> <td>2306 0.02</td> <td>2375 0.02</td> <td>2640</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sherm            | 1an = 0.01  | 1680 0.0             | 1878 0.0                              | 2306 0.02  | 2375 0.02 | 2640    |
| 0.01169       0.01000       0.01126       0.01531       0.00609       0.00539       0.02194         0.01886       0.00981       0.01379       0.01144       0.00864       0.01468       0.01539         0.02612       0.00318       0.00552       0.02768       0.03125       0.03290         0.01672       0.01760       0.01426       0.00394       0.00280       0.02545       0.00363         0.00347       0.00511       0.00645       0.00368       0.01456       0.01401       0.01318         0.01870       0.01194       0.02336       0.02294       0.02024       0.00601       0.00541         0.02825       0.01703       0.02295       0.02907       0.02555       0.00332         Racine       0.02630       0.02911       0.03138       0.03128       0.03295         0.01674       0.01757       0.01396       0.00390       0.00279       0.02555       0.00332         0.00324       0.00491       0.00614       0.00344       0.01447       0.01373       0.01303         0.01883       0.01693       0.02284       0.02921       0.03122       0.03269         Green-Bay       0.02683       0.02958       0.03145       0.03122       0.03269 <td>0.01214</td> <td>0.01026</td> <td>0.01568</td> <td>0.01190</td> <td>0.01297</td> <td>0.02205</td> <td>0.01276</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01214          | 0.01026     | 0.01568              | 0.01190                               | 0.01297    | 0.02205   | 0.01276 |
| 0.01886       0.00981       0.01379       0.01144       0.00864       0.01468       0.01539         0.02612       0.00318       0.00552       0.02768       0.03137       0.03125       0.03290         0.01672       0.01760       0.01426       0.00394       0.00280       0.02545       0.00363         0.00347       0.00511       0.00645       0.00368       0.01456       0.01401       0.01318         0.01870       0.01194       0.02336       0.02294       0.02024       0.00601       0.00541         0.02825       0.01703       0.0295       0.02907       0.02555       0.00332         Racine       0.02630       0.02911       0.03138       0.03128       0.03295         0.01674       0.01757       0.01396       0.00390       0.00279       0.02555       0.00332         0.00324       0.00491       0.00614       0.00344       0.01447       0.01373       0.01303         0.01883       0.01194       0.02331       0.02284       0.02013       0.00574       0.00515         0.02838       0.01693       0.02284       0.0213       0.03122       0.03269         0.01682       0.01801       0.01618       0.00483       0.00367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01169          | 0.01000     | 0.01126              | 0.01531                               | 0.00609    | 0.00539   | 0.02194 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01886          | 0.00981     | 0.01379              | 0.01144                               | 0.00864    | 0.01468   | 0.01539 |
| Milwaukee0.026350.029150.031370.031250.032900.016720.017600.014260.003940.002800.025450.003630.003470.005110.006450.003680.014560.014010.013180.018700.011940.023360.022940.020240.006010.005410.028250.017030.022950.029070.02110.031380.031280.032950.016740.017570.013960.003900.002790.025550.003320.003240.004910.006140.003440.014470.013730.013030.018830.011940.023310.022840.020130.005740.005150.028380.016930.029580.031450.031220.032690.016820.018010.016180.004830.003670.024980.005650.005230.006660.008480.005380.015390.015870.014180.018940.012230.023900.023760.021110.007850.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02612          | 0.00318     | 0.00552              | 0.02768                               | 00107      |           |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Milwa            | aukee $0.0$ | 0.02635 0.0          | 0.00000000000000000000000000000000000 | 03137 0.0  | 0.000     | 03290   |
| 0.00347       0.00511       0.00645       0.00368       0.01456       0.01401       0.01318         0.01870       0.01194       0.02336       0.02294       0.02024       0.00601       0.00541         0.02825       0.01703       0.02295       0.02907       0.03128       0.03295         Racine       0.02630       0.02911       0.03138       0.03128       0.03295         0.01674       0.01757       0.01396       0.00390       0.00279       0.02555       0.00332         0.00324       0.00491       0.00614       0.00344       0.01447       0.01373       0.01303         0.01883       0.01194       0.02331       0.02284       0.02013       0.00574       0.00515         0.02838       0.01693       0.02284       0.02921       0.03122       0.03269         Green-Bay       0.02683       0.02958       0.03145       0.03122       0.03269         0.01682       0.01801       0.01618       0.00483       0.00367       0.02498       0.00565         0.00523       0.00666       0.00848       0.00538       0.01539       0.01587       0.01418         0.01894       0.01223       0.02390       0.02376       0.02111       0.00785 <td>0.016/2</td> <td>0.01760</td> <td>0.01426</td> <td>0.00394</td> <td>0.00280</td> <td>0.02545</td> <td>0.00363</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.016/2          | 0.01760     | 0.01426              | 0.00394                               | 0.00280    | 0.02545   | 0.00363 |
| 0.01870       0.01194       0.02336       0.02294       0.02024       0.00601       0.00541         0.02825       0.01703       0.02295       0.02907       0.03138       0.03128       0.03295         0.01674       0.01757       0.01396       0.00390       0.00279       0.02555       0.00332         0.00324       0.00491       0.00614       0.00344       0.01447       0.01373       0.01303         0.01883       0.01194       0.02331       0.02284       0.02013       0.00574       0.00515         0.02838       0.01693       0.02284       0.02921       0.03122       0.03269         Green-Bay       0.02683       0.02958       0.03145       0.03122       0.03269         0.01682       0.01801       0.01618       0.00483       0.00367       0.02498       0.00565         0.00523       0.00666       0.00848       0.00538       0.01539       0.01587       0.01418         0.01894       0.01223       0.02390       0.02376       0.02111       0.00785       0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00347          | 0.00511     | 0.00645              | 0.00368                               | 0.01456    | 0.01401   | 0.01318 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01870          | 0.01194     | 0.02336              | 0.02294                               | 0.02024    | 0.00601   | 0.00541 |
| Racine $0.02630$ $0.02911$ $0.03138$ $0.03128$ $0.03295$ $0.01674$ $0.01757$ $0.01396$ $0.00390$ $0.00279$ $0.02555$ $0.00332$ $0.00324$ $0.00491$ $0.00614$ $0.00344$ $0.01447$ $0.01373$ $0.01303$ $0.01883$ $0.01194$ $0.02331$ $0.02284$ $0.02013$ $0.00574$ $0.00515$ $0.02838$ $0.01693$ $0.02284$ $0.02921$ $0.03122$ $0.03269$ Green-Bay $0.02683$ $0.02958$ $0.03145$ $0.03122$ $0.03269$ $0.01682$ $0.01801$ $0.01618$ $0.00483$ $0.00367$ $0.02498$ $0.00565$ $0.00523$ $0.00666$ $0.00848$ $0.00538$ $0.01539$ $0.01587$ $0.01418$ $0.01894$ $0.01223$ $0.02390$ $0.02376$ $0.02111$ $0.00785$ $0.00713$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02825          | 0.01/03     | 0.02295              | 0.0290/                               | 120 0.021  |           | 205     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Racin            | e 0.026     | 0.029                | 911 0.03                              | 138 0.03   | 0.032     | 295     |
| 0.00324       0.00491       0.00614       0.00344       0.01447       0.01373       0.01303         0.01883       0.01194       0.02331       0.02284       0.02013       0.00574       0.00515         0.02838       0.01693       0.02284       0.02921       0.03145       0.03122       0.03269         0.01682       0.01801       0.01618       0.00483       0.00367       0.02498       0.00565         0.00523       0.00666       0.00848       0.00538       0.01539       0.01587       0.01418         0.01894       0.01223       0.02390       0.02376       0.02111       0.00785       0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.016/4          | 0.01/5/     | 0.01396              | 0.00390                               | 0.00279    | 0.02555   | 0.00332 |
| 0.01883       0.01194       0.02331       0.02284       0.02013       0.00574       0.00515         0.02838       0.01693       0.02284       0.02921       0.03145       0.03122       0.03269         0.01682       0.01801       0.01618       0.00483       0.00367       0.02498       0.00565         0.00523       0.00666       0.00848       0.00538       0.01539       0.01587       0.01418         0.01894       0.01223       0.02390       0.02376       0.02111       0.00785       0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00324          | 0.00491     | 0.00614              | 0.00344                               | 0.01447    | 0.013/3   | 0.01303 |
| 0.02838         0.01693         0.02284         0.02921           Green-Bay         0.02683         0.02958         0.03145         0.03122         0.03269           0.01682         0.01801         0.01618         0.00483         0.00367         0.02498         0.00565           0.00523         0.00666         0.00848         0.00538         0.01539         0.01587         0.01418           0.01894         0.01223         0.02390         0.02376         0.02111         0.00785         0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01883          | 0.01194     | 0.02331              | 0.02284                               | 0.02013    | 0.00574   | 0.00515 |
| Orden-Bay0.026830.029580.031450.031220.032690.016820.018010.016180.004830.003670.024980.005650.005230.006660.008480.005380.015390.015870.014180.018940.012230.023900.023760.021110.007850.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02838          | 0.01693     | 0.02284              | 0.02921                               | 02145 0.0  | 0.0 A     | 22(0    |
| 0.01882         0.01801         0.01818         0.00483         0.00307         0.02498         0.00303           0.00523         0.00666         0.00848         0.00538         0.01539         0.01587         0.01418           0.01894         0.01223         0.02390         0.02376         0.02111         0.00785         0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O 01692          | I-Bay 0.0   | 0.01619              | 0.00492                               | 0.00267    | 0.02408   | 0.00565 |
| 0.00323         0.00000         0.00848         0.00338         0.01339         0.01387         0.01418           0.01894         0.01223         0.02390         0.02376         0.02111         0.00785         0.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01082          | 0.01801     | 0.01018              | 0.00485                               | 0.00507    | 0.02498   | 0.00303 |
| 0.01694 0.01225 0.02590 0.02570 0.02111 0.00785 0.00715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00323          | 0.00000     | 0.00848              | 0.00338                               | 0.01339    | 0.0138/   | 0.01418 |
| 0.02755 0.01780 0.02382 0.02826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01094          | 0.01223     | 0.02390              | 0.023/0                               | 0.02111    | 0.00/83   | 0.00/13 |
| $\frac{0.02735}{\text{Appleton}} = 0.02651 + 0.02027 + 0.02118 + 0.02006 + 0.02246$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02/33<br>Appla | 0.01/09     | 0.02303<br>0651 0.01 | 0.02020<br>007 00                     | 3118 0.03  | 8096 0.02 | 8246    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 01653          | 0.01 0.02   | 0.01600              | 0.0                                   | 0.0270     | 0.02/70   | 0 00528 |
| 0.0125 $0.01700$ $0.01000$ $0.00110$ $0.00529$ $0.02479$ $0.00538$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001033         | 0.01/08     | 0.01000              | 0.00445                               | 0.00323    | 0.02779   | 0.00336 |

| GROUP 2 |         |          | CH E 42   | 273      |           |         |
|---------|---------|----------|-----------|----------|-----------|---------|
| 0.01878 | 0.01191 | 0.02357  | 0.02341   | 0.02076  | 0.00770   | 0.00701 |
| 0.02740 | 0.01753 | 0.02347  | 0.02813   |          |           |         |
| Wasau   | ı 0.    | 02585 0. | 02857 0.0 | 03027 0. | 02999 0.0 | 03140   |
| 0.01563 | 0.01696 | 0.01729  | 0.00445   | 0.00346  | 0.02363   | 0.00650 |
| 0.00559 | 0.00670 | 0.00925  | 0.00667   | 0.01462  | 0.01614   | 0.01568 |
| 0.01747 | 0.01117 | 0.02296  | 0.02299   | 0.02041  | 0.00906   | 0.00842 |
| 0.02615 | 0.01713 | 0.02311  | 0.02684   |          |           |         |
| Shebo   | ygan    | 0.02684  | 0.02962 0 | 0.03167  | 0.03149 0 | 0.03305 |
| 0.01703 | 0.01806 | 0.01514  | 0.00456   | 0.00337  | 0.02546   | 0.00467 |
| 0.00448 | 0.00605 | 0.00749  | 0.00436   | 0.01522  | 0.01506   | 0.01341 |
| 0.01857 | 0.01233 | 0.02388  | 0.02359   | 0.02091  | 0.00682   | 0.00611 |
| 0.02813 | 0.01770 | 0.02362  | 0.02889   |          |           |         |

# ; Table

marktranscorn(i,m) transportation costs from plant to sales market (\$ per pound)

|              | CA1 O     | H1 V     | <b>A</b> 1 |
|--------------|-----------|----------|------------|
| Anniston     | 0.016727  | 0.003725 | 0.005427   |
| Tuscaloosa   | 0.015862  | 0.00423  | 0.006354   |
| Gadsden      | 0.016604  | 0.003463 | 0.005327   |
| Talladega    | 0.016613  | 0.003838 | 0.005589   |
| Hot-Springs  | 0.012935  | 0.005454 | 0.008629   |
| Los-Angeles  | 0         | 0.017093 | 0.019465   |
| Dubuque      | 0.014394  | 0.003744 | 0.007144   |
| Ottumwa      | 0.013434  | 0.004185 | 0.007784   |
| Fort-Wayne   | 0.01681   | 0.001263 | 0.004294   |
| South-Bend   | 0.016329  | 0.001902 | 0.00498    |
| Columbus     | 0.016424  | 0.000708 | 0.004364   |
| Monroe       | 0.013668  | 0.005914 | 0.008664   |
| Detroit      | 0.017896  | 0.002272 | 0.003876   |
| Grand-Rapids | s 0.01679 | 0.002503 | 0.005017   |
| Kalamazoo    | 0.016702  | 0.002128 | 0.004841   |
| Minneapolis  | 0.013741  | 0.005671 | 0.008845   |
| St-Cloud     | 0.013513  | 0.006308 | 0.009441   |
| Fergus-Falls | 0.012964  | 0.007265 | 0.00989    |
| Mankato      | 0.013261  | 0.005686 | 0.009001   |
| Joplin       | 0.014114  | 0.003145 | 0.006771   |
| Tupelo       | 0.015168  | 0.003911 | 0.00654    |
| Greensboro   | 0.01845   | 0.003115 | 0.001952   |
| Hickory      | 0.017796  | 0.002768 | 0.002651   |
| Manchester   | 0.021993  | 0.006935 | 0.004279   |
| Keene        | 0.021625  | 0.006541 | 0.003984   |
| Cleveland    | 0.017427  | 0.000997 | 0.003006   |
| Dayton       | 0.017243  | 0.000258 | 0.003598   |
| Toledo       | 0.017492  | 0.000825 | 0.003856   |



| GROUP 2    |          | СН       | E 4273   |
|------------|----------|----------|----------|
| Youngstown | 0.017949 | 0.00119  | 0.002532 |
| Findlay    | 0.017531 | 0.000649 | 0.003607 |
| Tulsa      | 0.011456 | 0.006224 | 0.009237 |
| Eugene     | 0.007083 | 0.017193 | 0.020375 |
| Medford    | 0.005963 | 0.017138 | 0.020363 |
| Greenville | 0.017471 | 0.003042 | 0.003356 |
| Dallas     | 0.011142 | 0.007743 | 0.010389 |
| Ft-Worth   | 0.011041 | 0.007839 | 0.010489 |
| Waco       | 0.011108 | 0.0084   | 0.010903 |
| Longview   | 0.01228  | 0.006987 | 0.009493 |
| Lufkin     | 0.012387 | 0.00749  | 0.009842 |
| Sherman    | 0.011158 | 0.007339 | 0.010087 |
| Milwaukee  | 0.015721 | 0.003007 | 0.006028 |
| Racine     | 0.015718 | 0.002868 | 0.005938 |
| Green-Bay  | 0.015821 | 0.003926 | 0.006636 |
| Appleton   | 0.015678 | 0.00385  | 0.00665  |
| Wasau      | 0.015256 | 0.004531 | 0.007372 |
| Sheboygan  | 0.0159   | 0.003408 | 0.006209 |

miles

# Table

| dpm(i,n      | n) distance | e from pl | ant to ma | rket in |
|--------------|-------------|-----------|-----------|---------|
| C            | A1 O        | H1        | VA1       |         |
| Anniston     | 1853        | 392       | 571       |         |
| Tuscaloosa   | 1758        | 445       | 669       |         |
| Gadsden      | 1840        | 364       | 561       |         |
| Talladega    | 1841        | 404       | 588       |         |
| Hot-Springs  | 1433        | 574       | 908       |         |
| Los-Angeles  | 0           | 1894      | 2277      |         |
| Dubuque      | 1595        | 394       | 752       |         |
| Ottumwa      | 1489        | 441       | 819       |         |
| Fort-Wayne   | 1863        | 133       | 452       |         |
| South-Bend   | 1809        | 200       | 524       |         |
| Columbus     | 1820        | 75        | 459       |         |
| Monroe       | 1515        | 623       | 912       |         |
| Detroit      | 1983        | 239       | 408       |         |
| Grand-Rapids | s 1860      | 263       | 528       |         |
| Kalamazoo    | 1851        | 224       | 510       |         |
| Minneapolis  | 1523        | 597       | 931       |         |
| St-Cloud     | 1497        | 664       | 994       |         |
| Fergus-Falls | 1437        | 765       | 1096      |         |
| Mankato      | 1469        | 599       | 947       |         |
| Joplin       | 1564        | 331       | 713       |         |
| Tupelo       | 1681        | 412       | 688       |         |
| Greensboro   | 2158        | 328       | 205       |         |



| GROUP 2    |      |      | СН   |
|------------|------|------|------|
| Hickory    | 2081 | 291  | 279  |
| Manchester | 2572 | 730  | 450  |
| Keene      | 2529 | 689  | 419  |
| Cleveland  | 2038 | 210  | 316  |
| Dayton     | 1911 | 54   | 379  |
| Toledo     | 1938 | 174  | 406  |
| Youngstown | 2099 | 251  | 266  |
| Findlay    | 1943 | 137  | 380  |
| Tulsa      | 1269 | 655  | 1023 |
| Eugene     | 746  | 2011 | 2383 |
| Medford    | 628  | 2004 | 2382 |
| Greenville | 2043 | 320  | 353  |
| Dallas     | 1235 | 815  | 1151 |
| Ft-Worth   | 1223 | 825  | 1162 |
| Waco       | 1231 | 884  | 1208 |
| Longview   | 1361 | 735  | 1052 |
| Lufkin     | 1372 | 788  | 1091 |
| Sherman    | 1236 | 773  | 1118 |
| Milwaukee  | 1742 | 317  | 634  |
| Racine     | 1742 | 302  | 625  |
| Green-Bay  | 1753 | 413  | 698  |
| Appleton   | 1737 | 405  | 700  |
| Wasau      | 1690 | 477  | 776  |
| Sheboygan  | 1762 | 359  | 654  |

# ;

## VARIABLES

| Q(p,t)      | Capacity of the process                                 |
|-------------|---------------------------------------------------------|
| QE(p,t)     | Expansion in capacity of the process                    |
| W(p,c,t)    | Mass flow rate of the product                           |
| R(p,c,t)    | Mass flow rate of reactant                              |
| F(p,pp,c,t) | Mass flow rate of chemicals from one process to another |
| PURCH(m,    | p,c,t) Mass flow rate of purchased chemicals            |
| SALES(m,p   | ,c,t) Mass flow rate of sold chemicals                  |
| CAPITAL(    | o,t) Capital cost for each process                      |
| OPCOST(p    | t) Operating cost for each process                      |
| Y(p,t)      | Binary variable for fixed investment cost               |
| INVEST(t)   | Total invenst                                           |
| NPV         | Net present value                                       |
| trans(i,t)  | Transportation Costs                                    |
| yc(i,kc,t)  | -                                                       |
| TOTALOP     | COST(t)                                                 |

E 4273



GROUP 2 CORNpurchased(p,kc,t) TRANS(i,t) AUX11(i,t) ;

POSITIVE VARIABLES

```
Q(p,t)
QE(p,t)
W(p,c,t)
R(p,c,t)
F(p,pp,c,t)
PURCH(m,p,c,t)
SALES(m,p,c,t)
CAPITAL(p,t)
OPCOST(p,t)
INVEST(t)
TRANS(i,t)
yc(i,kc,t)
CORNpurchased(p,kc,t)
FLOCORN(p,t)
rev(t)
        ;
```

BINARY VARIABLE

Y(p,t) z(i)

Q.fx(p,'2003')=0;

# EQUATIONS

| Capacity(p,t,c)     | Constrain on capacity                 |
|---------------------|---------------------------------------|
| Expansion(p,t)      | Expension in process                  |
| Decision(p,t)       | Decision making equation              |
| Material1(p,c,cc,t) | Material balances in each plant       |
| Material2(p,c,cc,t) | Material balances in each plant       |
| Material3(p,c,t)    | Material balances in each plant       |
| Material4(p,c,t)    | Material balances in each plant       |
| Supply(c,m,t)       | Upper supply of chemicals             |
| Demand(c,m,t)       | Upper demand of Chemicals             |
| CapitalInv(p,t)     | Capital investment cost of each plant |
| TotalInv(t)         | Total investment at each time period  |
| LIMTotalInv(t)      | Limit on total investment             |
| Opercost(p,t,c)     | Operation cost of each plant          |

;



GROUP 2 CH E 4273 Net Net present value of the project PlantOpercost(t) Cornbalance(p,t) Flowofcorn(p,t,c) TRcosts1(i,t) Transportation costs TRcosts2(i,t) Transportation costs location1 Reveq(t)

;

Capacity(p,t,c)\$main(p,c). Q(p,t) = g = W(p,c,t)Expansion(p,t)\$(ord(t) gt 1)... Q(p,t) = e = Q(p,t-1) + QE(p,t)QE(p,t) - Y(p,t)\*10000 = l = 0Decision(p,t).. Material1(p,c,cc,t)\$main(p,cc).. W(p,c,t) = e = mu1(p,c)\*W(p,cc,t)Material2(p,c,cc,t)\$main(p,cc). R(p,c,t) = e = mu2(p,c)\*W(p,cc,t)W(p,c,t) = e = SUM(pp,F(p,pp,c,t)) + SUM(m,SALES(m,p,c,t));Material3(p,c,t).. Material4(p,c,t)\$(ord(c) gt 1).. R(p,c,t) = e =SUM(pp,F(pp,p,c,t))+SUM(m,PURCH(m,p,c,t));Supply(c,m,t). Usupply(c,m,t) = g = SUM(p,PURCH(m,p,c,t))Udemand(c,m,t) = g = SUM(p,SALES(m,p,c,t))Demand(c,m,t)... CAPITAL(p,t) = e = 1e6\*(alpha(p)\*QE(p,t))+(beta(p)\*Y(p,t));CapitalInv(p,t).. TotalInv(t).. INVEST(t) = e = SUM(p, CAPITAL(p,t))INVEST(t) =l= maxinvest LIMTotalInv(t).. Opercost(p,t,c) main(p,c). OPCOST(p,t) = e = delta(p) \* W(p,c,t) + (beta(p) \* Y(p,t)) +SUM(i,TRANS(i,t)); PlantOpercost(t).. TOTALOPCOST(t) =e= sum(p,OPCOST(p,t)); NPV =e= -SUM(t\$(ord(t) gt 1),INVEST(t)/(1+int)\*\*ord(t))-Net. SUM((t),TOTALOPCOST(t)/(1+int)\*\*ord(t)) -1000000000\* SUM((i,t), TRANS(i,t)/(1+int)\*\*ord(t)) - SUM((t,cc,m),price1(cc,t)\*1e6\*SUM(p,PURCH(m,p,cc,t)/(1+int)\*\*ord(t)))  $+ \operatorname{sum}(t,\operatorname{Rev}(t)/(1+\operatorname{int})**\operatorname{ord}(t));$ Reveq(t)..  $\operatorname{Rev}(t) = \operatorname{sum}((\operatorname{cc}, m), \operatorname{price}(\operatorname{cc}, t)) + \operatorname{1e6}(\operatorname{sum}(p, \operatorname{sales}(m, p, \operatorname{cc}, t)))$ ;

#### CH E 4273

;

;



FLOCORN(p,t) = e = W(p,c,t) \* corn(p) ;

Cornbalance(p,t).. FLOCORN(p,t) = e = sum(kc,CORNpurchased(p,kc,t));

 $TRcosts1(i,t).. TRANS(i,t)-1000*z(i) = L= 0; \\TRcosts2(i,t).. TRANS(i,t)+1000*(1-z(i)) = g= \\sum(kc,transcorn(i,kc)*sum(p,CORNpurchased(p,kc,t))); \\$ 

```
location1 .. sum(i, z(i))=e=1;
```

MODEL

GLUC GLUC Model /all/

SOLVE

GLUC using mip MAXIMIZING NPV

OPTION LIMCOL =0; OPTION LIMROW =0; option optcr=0. ;

DISPLAY

Q.I, R.I, F.I, SALES.I, CAPITAL.I, INVEST.I, Y.I, QE.I, OPCOST.I, CORNpurchased.L, flocorn.I, z.I, Rev.I, W.I, NPV.I;



# **Appendix F:**

# Transportation Costs: Farm to Plants and Plants to Markets

(Corn Only)



CH E 4273

| Farm t  | o Plant  | Coste 1 | ner I | Dound ( | Corn  | (Only) |  |
|---------|----------|---------|-------|---------|-------|--------|--|
| r arm v | 0 I lant | COSIS   | puri  | ounu (  | COIII | υmyj   |  |

| City         | Bheonix | u (com only<br>Vuma | /<br>Bakersfield | Erespo  | Nana    | Greeley | Pueblo  |
|--------------|---------|---------------------|------------------|---------|---------|---------|---------|
| Anniston     | 0.02717 | 0.03001             | 0.03408          | 0.03461 | 0.03510 | 0.02053 | 0.01060 |
| Tuscaloosa   | 0.02717 | 0.03001             | 0.03400          | 0.03401 | 0.03548 | 0.02033 | 0.01909 |
| Gadeden      | 0.02540 | 0.02022             | 0.03239          | 0.03/31 | 0.03480 | 0.01920 | 0.01020 |
| Talladega    | 0.02093 | 0.02900             | 0.03386          | 0.03441 | 0.03403 | 0.02013 | 0.01953 |
| Hot Springs  | 0.02093 | 0.02970             | 0.03380          | 0.03441 | 0.03493 | 0.02039 | 0.01952 |
|              | 0.01900 | 0.02240             | 0.02030          | 0.02707 | 0.02939 | 0.01433 | 0.01560 |
| Dubuquo      | 0.00004 | 0.00430             | 0.00100          | 0.00195 | 0.00040 | 0.01306 | 0.01300 |
| Ottumwa      | 0.02370 | 0.02030             | 0.02601          | 0.02004 | 0.03034 | 0.01330 | 0.01400 |
| Fort Wayne   | 0.02100 | 0.02443             | 0.02031          | 0.02031 | 0.02070 | 0.01213 | 0.01270 |
| South Bend   | 0.02013 | 0.03016             | 0.03269          | 0.03267 | 0.03444 | 0.01000 | 0.01879 |
| Columbus     | 0.02732 | 0.03003             | 0.03203          | 0.03321 | 0.03521 | 0.01893 | 0.01809 |
| Monroe       | 0.02093 | 0.02371             | 0.02812          | 0.02882 | 0.03146 | 0.01687 | 0.01533 |
| Detroit      | 0.03050 | 0.03334             | 0.03579          | 0.03572 | 0.03544 | 0.02033 | 0.02100 |
| Grand Rapids | 0.02841 | 0.03123             | 0.03353          | 0.03342 | 0.03508 | 0.01805 | 0.01882 |
| Kalamazoo    | 0.02814 | 0.03097             | 0.03340          | 0.03333 | 0.03505 | 0.01889 | 0.01861 |
| Minneapolis  | 0.02305 | 0.02570             | 0.02718          | 0.02686 | 0.02823 | 0.01247 | 0.01403 |
| St. Cloud    | 0.02282 | 0.02541             | 0.02665          | 0.02625 | 0.02751 | 0.01209 | 0.01387 |
| Fergus Falls | 0.02206 | 0.02456             | 0.02544          | 0.02495 | 0.02608 | 0.01120 | 0.01327 |
| Mankato      | 0.02198 | 0.02466             | 0.02627          | 0.02599 | 0.02745 | 0.01144 | 0.01290 |
| Joplin       | 0.02249 | 0.02537             | 0.02849          | 0.02870 | 0.03080 | 0.01436 | 0.01424 |
| Tupelo       | 0.02408 | 0.02693             | 0.03094          | 0.03147 | 0.03392 | 0.01841 | 0.01745 |
| Greensboro   | 0.03291 | 0.03579             | 0.03728          | 0.03758 | 0.03964 | 0.02471 | 0.02448 |
| Hickory      | 0.03149 | 0.03437             | 0.03601          | 0.03633 | 0.03844 | 0.02351 | 0.02318 |
| Manchester   | 0.03895 | 0.04165             | 0.04395          | 0.04383 | 0.04532 | 0.03091 | 0.03164 |
| Keene        | 0.03821 | 0.04092             | 0.04322          | 0.04311 | 0.04460 | 0.03014 | 0.03086 |
| Cleveland    | 0.03134 | 0.03420             | 0.03492          | 0.03491 | 0.03660 | 0.02147 | 0.02197 |
| Dayton       | 0.02885 | 0.03173             | 0.03466          | 0.03476 | 0.03475 | 0.01945 | 0.01969 |
| Toledo       | 0.02958 | 0.03244             | 0.03503          | 0.03502 | 0.03485 | 0.01963 | 0.02017 |
| Youngstown   | 0.03241 | 0.03528             | 0.03597          | 0.03597 | 0.03766 | 0.02259 | 0.02307 |
| Findlay      | 0.02958 | 0.03244             | 0.03515          | 0.03518 | 0.03505 | 0.01980 | 0.02024 |
| Tulsa        | 0.01774 | 0.01974             | 0.02340          | 0.02386 | 0.02627 | 0.01058 | 0.00939 |
| Eugene       | 0.01810 | 0.01746             | 0.01218          | 0.01027 | 0.00781 | 0.01866 | 0.01898 |
| Medford      | 0.01623 | 0.01538             | 0.00993          | 0.00802 | 0.00549 | 0.01812 | 0.01818 |
| Greenville   | 0.03072 | 0.03359             | 0.03541          | 0.03580 | 0.03797 | 0.02313 | 0.02266 |
| Dallas       | 0.01669 | 0.01863             | 0.02311          | 0.02388 | 0.02660 | 0.01290 | 0.01085 |
| Fort Worth   | 0.01648 | 0.01843             | 0.02292          | 0.02369 | 0.02641 | 0.01278 | 0.01071 |
| Waco         | 0.01656 | 0.01842             | 0.02316          | 0.02404 | 0.02685 | 0.01400 | 0.01176 |
| Longview     | 0.01813 | 0.02089             | 0.02539          | 0.02615 | 0.02884 | 0.01478 | 0.01295 |
| Lufkin       | 0.01830 | 0.02100             | 0.02569          | 0.02653 | 0.02930 | 0.01579 | 0.01380 |
| Sherman      | 0.01680 | 0.01878             | 0.02306          | 0.02375 | 0.02640 | 0.01214 | 0.01026 |
| Milwaukee    | 0.02635 | 0.02915             | 0.03137          | 0.03125 | 0.03290 | 0.01672 | 0.01760 |
| Racine       | 0.02630 | 0.02911             | 0.03138          | 0.03128 | 0.03295 | 0.01674 | 0.01757 |
| Green Bay    | 0.02683 | 0.02958             | 0.03145          | 0.03122 | 0.03269 | 0.01682 | 0.01801 |
| Appleton     | 0.02651 | 0.02927             | 0.03118          | 0.03096 | 0.03246 | 0.01653 | 0.01768 |
| Wasau        | 0.02585 | 0.02857             | 0.03027          | 0.02999 | 0.03140 | 0.01563 | 0.01696 |
| Sheboygan    | 0.02684 | 0.02962             | 0.03167          | 0.03149 | 0.03305 | 0.01703 | 0.01806 |



| Cedar Mountain |         |         |         |          |         |          |
|----------------|---------|---------|---------|----------|---------|----------|
| Louisville     | Rapids  | Dubuque | Home    | Danville | Peoria  | Quincy   |
| 0.00387        | 0.01248 | 0.01262 | 0.03150 | 0.00889  | 0.01014 | 0.01008  |
| 0.00575        | 0.01215 | 0.01248 | 0.03017 | 0.00918  | 0.01003 | 0.00962  |
| 0.00416        | 0.01190 | 0.01203 | 0.03109 | 0.00830  | 0.00955 | 0.00951  |
| 0.00411        | 0.01251 | 0.01269 | 0.03137 | 0.00901  | 0.01020 | 0.01009  |
| 0.01185        | 0.00983 | 0.01069 | 0.02452 | 0.00945  | 0.00887 | 0.00745  |
| 0.03517        | 0.02775 | 0.02879 | 0.01205 | 0.03128  | 0.02936 | 0.02782  |
| 0.01505        | 0.00059 | 0.00000 | 0.02304 | 0.00421  | 0.00249 | 0.00326  |
| 0.01496        | 0.00063 | 0.00121 | 0.02180 | 0.00498  | 0.00281 | 0.00196  |
| 0.01091        | 0.00651 | 0.00570 | 0.02843 | 0.00262  | 0.00448 | 0.00615  |
| 0.01214        | 0.00528 | 0.00437 | 0.02720 | 0.00235  | 0.00360 | 0.00537  |
| 0.00903        | 0.00673 | 0.00630 | 0.02844 | 0.00211  | 0.00423 | 0.00544  |
| 0.01066        | 0.01231 | 0.01306 | 0.02683 | 0.01113  | 0.01099 | 0.00981  |
| 0.01239        | 0.00849 | 0.00745 | 0.02997 | 0.00538  | 0.00695 | 0.00871  |
| 0.01338        | 0.00614 | 0.00505 | 0.02761 | 0.00408  | 0.00502 | 0.00680  |
| 0.01264        | 0.00597 | 0.00496 | 0.02768 | 0.00338  | 0.00455 | 0.00633  |
| 0.01814        | 0.00420 | 0.00405 | 0.02045 | 0.00821  | 0.00650 | 0.00677  |
| 0.01936        | 0.00540 | 0.00532 | 0.01960 | 0.00949  | 0.00777 | 0.00794  |
| 0.02108        | 0.00708 | 0.00716 | 0.01897 | 0.01136  | 0.00954 | 0.00952  |
| 0.02100        | 0.00700 | 0.00710 | 0.01007 | 0.00100  | 0.00004 | 0.00615  |
| 0.01004        | 0.00070 | 0.00000 | 0.01301 | 0.00000  | 0.00282 | 0.00010  |
| 0.01140        | 0.00400 | 0.00455 | 0.02430 | 0.00303  | 0.00202 | 0.00780  |
| 0.00710        | 0.01040 | 0.01007 | 0.02047 | 0.00769  | 0.00040 | 0.00709  |
| 0.00404        | 0.01420 | 0.01372 | 0.03030 | 0.00957  | 0.01103 | 0.01270  |
| 0.00378        | 0.01327 | 0.01250 | 0.03420 | 0.00009  | 0.01073 | 0.011992 |
| 0.01728        | 0.01885 | 0.01009 | 0.03001 | 0.01027  | 0.01709 | 0.01002  |
| 0.01070        | 0.01885 | 0.01776 | 0.03731 | 0.01540  | 0.01727 | 0.01900  |
| 0.01103        | 0.00909 | 0.00075 | 0.03133 | 0.00393  | 0.00762 | 0.00951  |
| 0.00927        | 0.00767 | 0.00721 | 0.02972 | 0.00343  | 0.00507 | 0.00704  |
| 0.01140        | 0.00775 | 0.00002 | 0.02951 | 0.00420  | 0.00595 | 0.00767  |
| 0.01101        | 0.01067 | 0.00993 | 0.03245 | 0.00704  | 0.00696 | 0.01064  |
| 0.01062        | 0.00799 | 0.00713 | 0.02982 | 0.00407  | 0.00600 | 0.00766  |
| 0.01518        | 0.00861 | 0.00971 | 0.02097 | 0.01005  | 0.00868 | 0.00692  |
| 0.03951        | 0.02873 | 0.02945 | 0.00711 | 0.03306  | 0.03100 | 0.02995  |
| 0.03906        | 0.02870 | 0.02948 | 0.00678 | 0.03296  | 0.03090 | 0.02975  |
| 0.00250        | 0.01339 | 0.01314 | 0.03398 | 0.00894  | 0.01084 | 0.01148  |
| 0.01593        | 0.01303 | 0.01408 | 0.02257 | 0.01372  | 0.01274 | 0.01107  |
| 0.01615        | 0.01313 | 0.01419 | 0.02243 | 0.01389  | 0.01288 | 0.01121  |
| 0.01654        | 0.01468 | 0.015/2 | 0.02330 | 0.01521  | 0.01432 | 0.01268  |
| 0.01364        | 0.01277 | 0.01371 | 0.02460 | 0.01265  | 0.01202 | 0.01052  |
| 0.01394        | 0.01414 | 0.01506 | 0.02538 | 0.01385  | 0.01331 | 0.01185  |
| 0.01568        | 0.01190 | 0.01297 | 0.02205 | 0.01276  | 0.01169 | 0.01000  |
| 0.01426        | 0.00394 | 0.00280 | 0.02545 | 0.00363  | 0.00347 | 0.00511  |
| 0.01396        | 0.00390 | 0.00279 | 0.02555 | 0.00332  | 0.00324 | 0.00491  |
| 0.01618        | 0.00483 | 0.00367 | 0.02498 | 0.00565  | 0.00523 | 0.00666  |
| 0.01600        | 0.00445 | 0.00329 | 0.02479 | 0.00538  | 0.00487 | 0.00628  |
| 0.01729        | 0.00445 | 0.00346 | 0.02363 | 0.00650  | 0.00559 | 0.00670  |
| 0.01514        | 0.00456 | 0.00337 | 0.02546 | 0.00467  | 0.00448 | 0.00605  |

# CH E 4273



|            | Fort    |         |         |         |          |           |         |            |
|------------|---------|---------|---------|---------|----------|-----------|---------|------------|
| Evansville | Wayne   | Meade   | Bastrop | Denton  | Billings | Lexington | Clovis  | Las Cruces |
| 0.00614    | 0.00977 | 0.01624 | 0.00674 | 0.01273 | 0.02645  | 0.01732   | 0.02426 | 0.02209    |
| 0.00635    | 0.01054 | 0.01464 | 0.00476 | 0.01460 | 0.02541  | 0.01612   | 0.02252 | 0.02027    |
| 0.00555    | 0.00922 | 0.01589 | 0.00668 | 0.01254 | 0.02597  | 0.01685   | 0.02403 | 0.02193    |
| 0.00624    | 0.00997 | 0.01605 | 0.00645 | 0.01306 | 0.02637  | 0.01720   | 0.02403 | 0.02184    |
| 0.00753    | 0.01185 | 0.00853 | 0.00261 | 0.01817 | 0.02034  | 0.01077   | 0.01756 | 0.01542    |
| 0.03124    | 0.03362 | 0.01855 | 0.02742 | 0.04043 | 0.01824  | 0.02010   | 0.00970 | 0.01265    |
| 0.00654    | 0.00570 | 0.01185 | 0.01272 | 0.01558 | 0.01737  | 0.00915   | 0.02072 | 0.02038    |
| 0.00639    | 0.00718 | 0.00950 | 0.01097 | 0.01703 | 0.01650  | 0.00726   | 0.01860 | 0.01814    |
| 0.00227    | 0.00000 | 0.01619 | 0.01290 | 0.00990 | 0.02191  | 0.01444   | 0.02512 | 0.02422    |
| 0.00248    | 0.00072 | 0.01537 | 0.01311 | 0.01120 | 0.02061  | 0.01332   | 0.02430 | 0.02357    |
| 0.00116    | 0.00119 | 0.01513 | 0.01065 | 0.01035 | 0.02227  | 0.01406   | 0.02411 | 0.02292    |
| 0.00873    | 0.01326 | 0.01091 | 0.00018 | 0.01826 | 0.02294  | 0.01354   | 0.01813 | 0.01650    |
| 0.00731    | 0.00284 | 0.01872 | 0.01568 | 0.00860 | 0.02316  | 0.01656   | 0.02748 | 0.02674    |
| 0.00666    | 0.00249 | 0.01662 | 0.01484 | 0.01102 | 0.02080  | 0.01420   | 0.02541 | 0.02484    |
| 0.00589    | 0.00173 | 0.01627 | 0.01412 | 0.01078 | 0.02097  | 0.01405   | 0.02513 | 0.02447    |
| 0.01058    | 0.00924 | 0.01226 | 0.01598 | 0.01877 | 0.01418  | 0.00830   | 0.02022 | 0.02057    |
| 0.01184    | 0.01048 | 0.01252 | 0.01700 | 0.01892 | 0.01316  | 0.00827   | 0.02006 | 0.02063    |
| 0.01361    | 0.01242 | 0.01257 | 0.01823 | 0.02075 | 0.01138  | 0.00803   | 0.01942 | 0.02030    |
| 0.01024    | 0.00945 | 0.01106 | 0.01511 | 0.01822 | 0.01368  | 0.00714   | 0.01914 | 0.01944    |
| 0.00329    | 0.00629 | 0.01023 | 0.00785 | 0.01522 | 0.01874  | 0.00962   | 0.01945 | 0.01832    |
| 0.00514    | 0.00959 | 0.01295 | 0.00396 | 0.01498 | 0.02365  | 0.01427   | 0.02115 | 0.01908    |
| 0.00836    | 0.00841 | 0.02044 | 0.01366 | 0.00569 | 0.02935  | 0.02018   | 0.02991 | 0.02815    |
| 0.00713    | 0.00794 | 0.01909 | 0.01207 | 0.00716 | 0.02838  | 0.01902   | 0.02850 | 0.02669    |
| 0.01729    | 0.01367 | 0.02836 | 0.02374 | 0.00686 | 0.03300  | 0.02635   | 0.03608 | 0.03523    |
| 0.01650    | 0.01286 | 0.02759 | 0.02303 | 0.00635 | 0.03228  | 0.02557   | 0.03535 | 0.03450    |
| 0.00723    | 0.00335 | 0.01856 | 0.01546 | 0.00696 | 0.02462  | 0.01772   | 0.02830 | 0.02737    |
| 0.00417    | 0.00175 | 0.01691 | 0.01240 | 0.00869 | 0.02334  | 0.01558   | 0.02582 | 0.02470    |
| 0.00600    | 0.00159 | 0.01771 | 0.01436 | 0.00882 | 0.02283  | 0.01579   | 0.02655 | 0.02571    |
| 0.00813    | 0.00450 | 0.01963 | 0.01621 | 0.00585 | 0.02571  | 0.01890   | 0.02938 | 0.02839    |
| 0.00553    | 0.00152 | 0.01768 | 0.01386 | 0.00844 | 0.02323  | 0.01596   | 0.02654 | 0.02560    |
| 0.00909    | 0.01266 | 0.00489 | 0.00625 | 0.02017 | 0.01774  | 0.00719   | 0.01458 | 0.01301    |
| 0.03414    | 0.03486 | 0.02319 | 0.03347 | 0.04191 | 0.01381  | 0.02194   | 0.01807 | 0.02168    |
| 0.03387    | 0.03487 | 0.02244 | 0.03268 | 0.04195 | 0.01424  | 0.02162   | 0.01/43 | 0.02016    |
| 0.00698    | 0.00859 | 0.01850 | 0.01093 | 0.00855 | 0.02831  | 0.01873   | 0.02776 | 0.02582    |
| 0.01208    | 0.01624 | 0.00690 | 0.00547 | 0.02255 | 0.01967  | 0.01084   | 0.01378 | 0.01117    |
| 0.01227    | 0.01641 | 0.00680 | 0.00569 | 0.02275 | 0.01958  | 0.01080   | 0.01357 | 0.01095    |
| 0.01342    | 0.01/69 | 0.00814 | 0.00610 | 0.02360 | 0.02081  | 0.01232   | 0.01381 | 0.01085    |
| 0.01065    | 0.01503 | 0.00873 | 0.00316 | 0.02078 | 0.02128  | 0.01212   | 0.01018 | 0.01352    |
| 0.011/2    | 0.01617 | 0.00974 | 0.00368 | 0.02149 | 0.02234  | 0.01336   | 0.01647 | 0.01357    |
| 0.01126    | 0.01531 | 0.00609 | 0.00539 | 0.02194 | 0.01886  | 0.00981   | 0.01379 | 0.01144    |
| 0.00645    | 0.00368 | 0.01456 | 0.01401 | 0.01318 | 0.01870  | 0.01194   | 0.02336 | 0.02294    |
| 0.00614    | 0.00344 | 0.01447 | 0.013/3 | 0.01303 | 0.01883  | 0.01194   | 0.02331 | 0.02284    |
| 0.00848    | 0.00538 | 0.01539 | 0.01587 | 0.01418 | 0.01894  | 0.01223   | 0.02390 | 0.02376    |
| 0.00819    | 0.00526 | 0.01503 | 0.01551 | 0.01426 | 0.01878  | 0.01191   | 0.02357 | 0.02341    |
| 0.00925    | 0.00667 | 0.01462 | 0.01614 | 0.01568 | 0.01/47  | 0.01117   | 0.02296 | 0.02299    |
| 0.00749    | 0.00436 | 0.01522 | 0.01506 | 0.01341 | 0.01857  | 0.01233   | 0.02388 | 0.02359    |


| Roswell | Cincinatti | Dayton  | Heppner | Dumas   | El Paso | Yakima  | City            |
|---------|------------|---------|---------|---------|---------|---------|-----------------|
| 0.01944 | 0.00745    | 0.00848 | 0.03520 | 0.01764 | 0.02167 | 0.03457 | Anniston        |
| 0.01857 | 0.00846    | 0.00949 | 0.03396 | 0.01590 | 0.01983 | 0.03531 | Tuscaloosa      |
| 0.01925 | 0.00693    | 0.00795 | 0.03477 | 0.01735 | 0.02152 | 0.03605 | Gadsden         |
| 0.01919 | 0.00768    | 0.00871 | 0.03509 | 0.01742 | 0.02141 | 0.03447 | Talladega       |
| 0.01256 | 0.01091    | 0.01170 | 0.02843 | 0.00969 | 0.01504 | 0.02986 | Hot Springs     |
| 0.01500 | 0.03419    | 0.03449 | 0.01479 | 0.01766 | 0.01338 | 0.01661 | Los Angeles     |
| 0.01864 | 0.00749    | 0.00721 | 0.02600 | 0.01433 | 0.02042 | 0.02691 | Dubuque         |
| 0.01625 | 0.00837    | 0.00837 | 0.02500 | 0.01197 | 0.01815 | 0.02604 | Ottumwa         |
| 0.02144 | 0.00253    | 0.00175 | 0.03141 | 0.01850 | 0.02411 | 0.03231 | Fort Wayne      |
| 0.02081 | 0.00380    | 0.00316 | 0.03013 | 0.01775 | 0.02350 | 0.03100 | South Bend      |
| 0.02013 | 0.00142    | 0.00190 | 0.03164 | 0.01730 | 0.02275 | 0.03266 | Columbus        |
| 0.01382 | 0.01183    | 0.01275 | 0.03081 | 0.01165 | 0.01600 | 0.03229 | Monroe          |
| 0.02397 | 0.00454    | 0.00351 | 0.03272 | 0.02004 | 0.02666 | 0.03349 | Detroit         |
| 0.02211 | 0.00501    | 0.00412 | 0.03036 | 0.01810 | 0.02481 | 0.03114 | Grand<br>Rapids |
| 0.02171 | 0.00426    | 0.00342 | 0.03051 | 0.01867 | 0.02441 | 0.03134 | Kalamazoo       |
| 0.01811 | 0.01134    | 0.01091 | 0.02303 | 0.01474 | 0.02076 | 0.02378 | Minneapolis     |
| 0.01826 | 0.01262    | 0.01216 | 0.02205 | 0.01494 | 0.02087 | 0.02275 | St. Cloud       |
| 0.01809 | 0.01453    | 0.01410 | 0.02033 | 0.01487 | 0.02061 | 0.02098 | Fergus Falls    |
| 0.01786 | 0.01137    | 0.01104 | 0.02255 | 0.01353 | 0.01963 | 0.02337 | Mankato         |
| 0.01635 | 0.00629    | 0.00673 | 0.02783 | 0.01240 | 0.01818 | 0.02899 | Joplin          |
| 0.01725 | 0.00782    | 0.00880 | 0.03223 | 0.01434 | 0.01869 | 0.03356 | Tupelo          |
| 0.02540 | 0.00623    | 0.00668 | 0.03665 | 0.02220 | 0.02782 | 0.03764 | Greensboro      |
| 0.02395 | 0.00554    | 0.00620 | 0.03566 | 0.02080 | 0.02635 | 0.03669 | Hickory         |
| 0.03440 | 0.01387    | 0.01320 | 0.04027 | 0.03057 | 0.03510 | 0.04080 | Manchester      |
| 0.03363 | 0.01308    | 0.01240 | 0.03959 | 0.02979 | 0.03437 | 0.04013 | Keene           |
| 0.02458 | 0.00199    | 0.00154 | 0.03417 | 0.02075 | 0.02724 | 0.03498 | Cleveland       |
| 0.02190 | 0.00052    | 0.00000 | 0.03280 | 0.01817 | 0.02453 | 0.03374 | Dayton          |
| 0.02293 | 0.00165    | 0.00114 | 0.03237 | 0.01905 | 0.02561 | 0.03321 | Toledo          |
| 0.02560 | 0.00238    | 0.00199 | 0.03526 | 0.02180 | 0.02825 | 0.03606 | Youngstown      |
| 0.02281 | 0.00130    | 0.00078 | 0.03275 | 0.01898 | 0.02547 | 0.03362 | Findlay         |
| 0.01007 | 0.01245    | 0.01302 | 0.02486 | 0.00646 | 0.01281 | 0.02630 | Tulsa           |
| 0.02258 | 0.03439    | 0.03431 | 0.00191 | 0.02271 | 0.02251 | 0.00406 | Eugene          |
| 0.02126 | 0.03428    | 0.03426 | 0.00250 | 0.02175 | 0.02098 | 0.00594 | Medford         |
| 0.02311 | 0.00608    | 0.00689 | 0.03548 | 0.02011 | 0.02545 | 0.03657 | Greenville      |
| 0.00848 | 0.01549    | 0.01624 | 0.02669 | 0.00340 | 0.00535 | 0.02828 | Dallas          |
| 0.00826 | 0.01568    | 0.01643 | 0.02655 | 0.00332 | 0.00523 | 0.02815 | Fort Worth      |
| 0.00841 | 0.01680    | 0.01759 | 0.02746 | 0.00380 | 0.00513 | 0.02911 | Waco            |
| 0.01087 | 0.01397    | 0.01481 | 0.02867 | 0.00452 | 0.00650 | 0.03022 | Longview        |
| 0.01108 | 0.01498    | 0.01585 | 0.02949 | 0.00488 | 0.00649 | 0.03108 | Lufkin          |
| 0.00864 | 0.01468    | 0.01539 | 0.02612 | 0.00318 | 0.00552 | 0.02768 | Sherman         |
| 0.02024 | 0.00601    | 0.00541 | 0.02825 | 0.01703 | 0.02295 | 0.02907 | Milwaukee       |
| 0.02013 | 0.00574    | 0.00515 | 0.02838 | 0.01693 | 0.02284 | 0.02921 | Racine          |
| 0.02111 | 0.00785    | 0.00713 | 0.02755 | 0.01789 | 0.02383 | 0.02826 | Green Bay       |
| 0.02076 | 0.00770    | 0.00701 | 0.02740 | 0.01753 | 0.02347 | 0.02813 | Appleton        |
| 0.02041 | 0.00906    | 0.00842 | 0.02615 | 0.01713 | 0.02311 | 0.02684 | Wasau           |
| 0.02091 | 0.00682    | 0.00611 | 0.02813 | 0.01770 | 0.02362 | 0.02889 | Sheboygan       |



CH E 4273

| Plant to Market | Costs per Pou | und      |          |            |              |          |          |
|-----------------|---------------|----------|----------|------------|--------------|----------|----------|
|                 | Los           |          | _        |            |              |          |          |
| Cities          | Angeles       | San Jose | Denver   | Wilmington | Jacksonville | Atlanta  | Chicago  |
| Anniston        | 0.016727      | 0.017415 | 0.010245 | 0.006715   | 0.003073     | 0.000776 | 0.005388 |
| luscaloosa      | 0.015862      | 0.017578 | 0.009549 | 0.007625   | 0.003753     | 0.001769 | 0.005712 |
| Gadsden         | 0.016604      | 0.017268 | 0.010053 | 0.006603   | 0.003323     | 0.000888 | 0.005105 |
| Talladega       | 0.016613      | 0.017322 | 0.010168 | 0.006877   | 0.003125     | 0.000922 | 0.005479 |
| Hot Springs     | 0.012935      | 0.014629 | 0.007062 | 0.009278   | 0.006834     | 0.004748 | 0.006114 |
| Los Angeles     | 0.000000      | 0.001470 | 0.007948 | 0.020252   | 0.018291     | 0.017444 | 0.016597 |
| Dubuque         | 0.014394      | 0.015197 | 0.007221 | 0.007686   | 0.009140     | 0.006597 | 0.002447 |
| Ottumwa         | 0.013434      | 0.014374 | 0.006268 | 0.008473   | 0.009004     | 0.006435 | 0.003330 |
| Fort Wayne      | 0.016810      | 0.017786 | 0.009365 | 0.004885   | 0.007146     | 0.004846 | 0.000582 |
| South Bend      | 0.016329      | 0.017234 | 0.009307 | 0.005500   | 0.007754     | 0.005379 | 0.000283 |
| Columbus        | 0.016424      | 0.017572 | 0.009123 | 0.005229   | 0.006187     | 0.003771 | 0.001655 |
| Monroe          | 0.013668      | 0.015529 | 0.008291 | 0.009394   | 0.005936     | 0.004249 | 0.006916 |
| Detroit         | 0.017896      | 0.017750 | 0.010385 | 0.004094   | 0.007861     | 0.005807 | 0.001396 |
| Grand Rapids    | 0.016790      | 0.017578 | 0.009258 | 0.005329   | 0.008379     | 0.006093 | 0.000732 |
| Kalamazoo       | 0.016702      | 0.017550 | 0.009191 | 0.005247   | 0.008010     | 0.005705 | 0.000337 |
| Minneapolis     | 0.013741      | 0.014206 | 0.006580 | 0.009202   | 0.010605     | 0.008616 | 0.004107 |
| St. Cloud       | 0.013513      | 0.013868 | 0.006420 | 0.009272   | 0.011209     | 0.009249 | 0.004718 |
| Fergus Falls    | 0.012964      | 0.013175 | 0.006011 | 0.010178   | 0.012053     | 0.009622 | 0.005689 |
| Mankato         | 0.013261      | 0.013800 | 0.006047 | 0.009436   | 0.010452     | 0.008440 | 0.004251 |
| Joplin          | 0.014114      | 0.015341 | 0.007276 | 0.007680   | 0.007206     | 0.004647 | 0.003199 |
| Tupelo          | 0.015168      | 0.016813 | 0.009167 | 0.007759   | 0.004635     | 0.002396 | 0.005179 |
| Greensboro      | 0.018450      | 0.019749 | 0.012440 | 0.003260   | 0.003792     | 0.002898 | 0.004774 |
| Hickory         | 0.017796      | 0.019138 | 0.011820 | 0.003956   | 0.003454     | 0.002149 | 0.004551 |
| Manchester      | 0.021993      | 0.022718 | 0.015690 | 0.002972   | 0.009291     | 0.009044 | 0.006984 |
| Keene           | 0.021625      | 0.022356 | 0.015303 | 0.002691   | 0.009057     | 0.008720 | 0.006575 |
| Cleveland       | 0.017427      | 0.018312 | 0.010929 | 0.003322   | 0.007163     | 0.005267 | 0.001933 |
| Dayton          | 0.017243      | 0.017359 | 0.009878 | 0.004352   | 0.006322     | 0.004108 | 0.001453 |
| Toledo          | 0.017492      | 0.017441 | 0.010015 | 0.004280   | 0.007378     | 0.005234 | 0.000964 |
| Youngstown      | 0.017949      | 0.018843 | 0.011487 | 0.002742   | 0.007096     | 0.005375 | 0.002523 |
| Findlay         | 0.017531      | 0.017530 | 0.010087 | 0.004135   | 0.006989     | 0.004857 | 0.001144 |
| Tulsa           | 0.011456      | 0.012995 | 0.005194 | 0.010203   | 0.008635     | 0.006396 | 0.006344 |
| Eugene          | 0.007083      | 0.004481 | 0.009394 | 0.020833   | 0.020856     | 0.018696 | 0.017032 |
| Medford         | 0.005963      | 0.003319 | 0.009065 | 0.020879   | 0.020574     | 0.018463 | 0.017064 |
| Greenville      | 0.017471      | 0.018886 | 0.011609 | 0.004664   | 0.002905     | 0.001457 | 0.004875 |
| Dallas          | 0.011142      | 0.013074 | 0.006206 | 0.011476   | 0.008604     | 0.006839 | 0.008239 |
| Fort Worth      | 0.011041      | 0.012979 | 0.006143 | 0.011574   | 0.008712     | 0.006950 | 0.008320 |
| Waco            | 0.011108      | 0.013170 | 0.006720 | 0.012021   | 0.008758     | 0.007194 | 0.008990 |
| Longview        | 0.012280      | 0.014202 | 0.007191 | 0.010620   | 0.007412     | 0.005723 | 0.007712 |
| Lufkin          | 0.012387      | 0.014406 | 0.007666 | 0.010996   | 0.007402     | 0.005924 | 0.008307 |
| Sherman         | 0.011158      | 0.012994 | 0.005857 | 0.011148   | 0.008585     | 0.006685 | 0.007751 |
| Milwaukee       | 0.015721      | 0.016488 | 0.008613 | 0.006436   | 0.008802     | 0.006365 | 0.001295 |
| Racine          | 0.015718      | 0.016510 | 0.008616 | 0.006373   | 0.008652     | 0.006212 | 0.001191 |
| Green Bay       | 0.015821      | 0.016420 | 0.008709 | 0.006873   | 0.009285     | 0.007362 | 0.002110 |
| Appleton        | 0.015678      | 0.016299 | 0.008557 | 0.006924   | 0.009193     | 0.007249 | 0.002056 |
| Wasau           | 0.015256      | 0.015787 | 0.008132 | 0.007622   | 0.009800     | 0.007854 | 0.002766 |
| Sheboygan       | 0.015900      | 0.016583 | 0.008790 | 0.006513   | 0.009253     | 0.006845 | 0.001603 |



| Indianapolis | Fort Wayne | Bedford  | Bowling Green | Madisonville | Shreveport | Boston   |
|--------------|------------|----------|---------------|--------------|------------|----------|
| 0.004048     | 0.004885   | 0.003478 | 0.001601      | 0.002604     | 0.004449   | 0.009821 |
| 0.004339     | 0.005268   | 0.003749 | 0.001911      | 0.002695     | 0.003458   | 0.010619 |
| 0.003759     | 0.004608   | 0.003187 | 0.001306      | 0.002308     | 0.004414   | 0.009676 |
| 0.004130     | 0.004983   | 0.003555 | 0.001665      | 0.002647     | 0.004302   | 0.009970 |
| 0.004963     | 0.005927   | 0.004507 | 0.003691      | 0.003521     | 0.001382   | 0.012242 |
| 0.016249     | 0.016810   | 0.016129 | 0.016215      | 0.015655     | 0.012753   | 0.022143 |
| 0.002803     | 0.002850   | 0.003134 | 0.004744      | 0.003713     | 0.006725   | 0.009457 |
| 0.003212     | 0.003592   | 0.003340 | 0.004562      | 0.003545     | 0.005718   | 0.009999 |
| 0.000497     | 0.000000   | 0.000779 | 0.003371      | 0.002685     | 0.007205   | 0.007181 |
| 0.000646     | 0.000359   | 0.000937 | 0.003768      | 0.002940     | 0.007223   | 0.007535 |
| 0.000182     | 0.000596   | 0.000205 | 0.002188      | 0.001519     | 0.006138   | 0.007999 |
| 0.005636     | 0.006629   | 0.005101 | 0.003778      | 0.003994     | 0.000494   | 0.012593 |
| 0.002393     | 0.001419   | 0.002917 | 0.004587      | 0.004037     | 0.008616   | 0.005858 |
| 0.002104     | 0.001247   | 0.002695 | 0.004570      | 0.003789     | 0.008083   | 0.006948 |
| 0.001709     | 0.000866   | 0.002300 | 0.004174      | 0.003399     | 0.007738   | 0.007086 |
| 0.004772     | 0.004621   | 0.005146 | 0.006756      | 0.005722     | 0.008165   | 0.009830 |
| 0.005412     | 0.005242   | 0.005787 | 0.007386      | 0.006350     | 0.008621   | 0.010215 |
| 0.006358     | 0.006211   | 0.006713 | 0.008256      | 0.007220     | 0.009139   | 0.011006 |
| 0.004749     | 0.004724   | 0.005065 | 0.006567      | 0.005531     | 0.007677   | 0.010228 |
| 0.002327     | 0.003146   | 0.002122 | 0.002801      | 0.001852     | 0.004404   | 0.009802 |
| 0.003821     | 0.004797   | 0.003240 | 0.001666      | 0.002118     | 0.003013   | 0.010597 |
| 0.004064     | 0.004207   | 0.003868 | 0.003463      | 0.004050     | 0.007887   | 0.007036 |
| 0.003650     | 0.003970   | 0.003361 | 0.002711      | 0.003380     | 0.007094   | 0.007679 |
| 0.007611     | 0.006837   | 0.007937 | 0.008876      | 0.008849     | 0.012782   | 0.000961 |
| 0.007208     | 0.006429   | 0.007539 | 0.008506      | 0.008461     | 0.012422   | 0.001123 |
| 0.002469     | 0.001677   | 0.002874 | 0.004283      | 0.003921     | 0.008585   | 0.005556 |
| 0.001049     | 0.000874   | 0.001349 | 0.002835      | 0.002386     | 0.007047   | 0.007052 |
| 0.001742     | 0.000796   | 0.002258 | 0.003945      | 0.003378     | 0.007965   | 0.006393 |
| 0.002981     | 0.002250   | 0.003335 | 0.004580      | 0.004328     | 0.008994   | 0.005066 |
| 0.001558     | 0.000760   | 0.002016 | 0.003617      | 0.003112     | 0.007743   | 0.006478 |
| 0.005492     | 0.006329   | 0.005196 | 0.005010      | 0.004490     | 0.002701   | 0.012827 |
| 0.017222     | 0.017432   | 0.017333 | 0.017164      | 0.017285     | 0.016017   | 0.021723 |
| 0.017167     | 0.017437   | 0.017241 | 0.017919      | 0.017122     | 0.015574   | 0.021939 |
| 0.003820     | 0.004295   | 0.003435 | 0.002381      | 0.003215     | 0.006537   | 0.008394 |
| 0.007187     | 0.008119   | 0.006770 | 0.005986      | 0.005825     | 0.001697   | 0.014410 |
| 0.007276     | 0.008205   | 0.006863 | 0.006092      | 0.005924     | 0.001805   | 0.014500 |
| 0.007895     | 0.008844   | 0.007452 | 0.006524      | 0.006462     | 0.001974   | 0.015041 |
| 0.006545     | 0.007517   | 0.006071 | 0.005044      | 0.005039     | 0.000508   | 0.013689 |
| 0.007105     | 0.008086   | 0.006608 | 0.005446      | 0.005544     | 0.000881   | 0.014143 |
| 0.006740     | 0.007655   | 0.006348 | 0.005693      | 0.005448     | 0.001771   | 0.014011 |
| 0.002259     | 0.001839   | 0.002782 | 0.004646      | 0.003708     | 0.007539   | 0.008057 |
| 0.002108     | 0.001719   | 0.002628 | 0.004491      | 0.003553     | 0.007412   | 0.008068 |
| 0.003249     | 0.002691   | 0.003787 | 0.005658      | 0.004720     | 0.008414   | 0.008010 |
| 0.003140     | 0.002632   | 0.003667 | 0.005527      | 0.004578     | 0.008228   | 0.008143 |
| 0.003770     | 0.003336   | 0.004267 | 0.006087      | 0.005104     | 0.008456   | 0.008677 |
| 0.002731     | 0.002181   | 0.003275 | 0.005153      | 0.004229     | 0.008051   | 0.007875 |



| GROUP 2   |          |          | CH E 4273 |             |           |          |           |
|-----------|----------|----------|-----------|-------------|-----------|----------|-----------|
| Baltimore | Bangor   | Detroit  | Lansing   | Minneapolis | St. Louis | Jackson  | Charlotte |
| 0.006249  | 0.010768 | 0.005986 | 0.006079  | 0.008309    | 0.004186  | 0.002478 | 0.002873  |
| 0.007157  | 0.011583 | 0.006497 | 0.006476  | 0.008176    | 0.003914  | 0.001486 | 0.003861  |
| 0.006135  | 0.010632 | 0.005729 | 0.005805  | 0.008016    | 0.003908  | 0.002508 | 0.002851  |
| 0.006411  | 0.010919 | 0.006104 | 0.006181  | 0.008334    | 0.004179  | 0.002321 | 0.003034  |
| 0.009310  | 0.013251 | 0.007345 | 0.006976  | 0.006834    | 0.003031  | 0.002183 | 0.006574  |
| 0.019895  | 0.023064 | 0.017896 | 0.017197  | 0.013741    | 0.014114  | 0.014700 | 0.018056  |
| 0.007368  | 0.009967 | 0.003726 | 0.002961  | 0.002023    | 0.002464  | 0.006633 | 0.006868  |
| 0.008116  | 0.010993 | 0.004701 | 0.003991  | 0.002513    | 0.001852  | 0.005904 | 0.007086  |
| 0.004542  | 0.008247 | 0.001419 | 0.001208  | 0.004621    | 0.003146  | 0.006257 | 0.004393  |
| 0.005181  | 0.008593 | 0.001677 | 0.001097  | 0.003905    | 0.002951  | 0.006473 | 0.005079  |
| 0.004820  | 0.009066 | 0.002517 | 0.002399  | 0.005130    | 0.002452  | 0.005080 | 0.003718  |
| 0.009421  | 0.013585 | 0.008016 | 0.007768  | 0.008148    | 0.004099  | 0.001090 | 0.006307  |
| 0.003853  | 0.006918 | 0.000000 | 0.000401  | 0.005109    | 0.004535  | 0.007587 | 0.004849  |
| 0.005070  | 0.007992 | 0.000623 | 0.000223  | 0.003874    | 0.003770  | 0.007336 | 0.005552  |
| 0.004958  | 0.008140 | 0.000629 | 0.000293  | 0.004006    | 0.003467  | 0.006953 | 0.005221  |
| 0.008943  | 0.010752 | 0.005109 | 0.004309  | 0.000000    | 0.004286  | 0.008411 | 0.008842  |
| 0.009038  | 0.011116 | 0.005667 | 0.004872  | 0.000321    | 0.004872  | 0.008962 | 0.009481  |
| 0.009950  | 0.011885 | 0.006624 | 0.005832  | 0.000798    | 0.005652  | 0.009168 | 0.009908  |
| 0.009154  | 0.011165 | 0.005364 | 0.004561  | 0.000301    | 0.003972  | 0.008029 | 0.008812  |
| 0.007267  | 0.010817 | 0.004535 | 0.004048  | 0.004286    | 0.000000  | 0.004172 | 0.005568  |
| 0.007292  | 0.011583 | 0.006117 | 0.005990  | 0.007328    | 0.003044  | 0.000736 | 0.004274  |
| 0.002816  | 0.007968 | 0.004444 | 0.004993  | 0.008777    | 0.005824  | 0.006034 | 0.000387  |
| 0.003498  | 0.008638 | 0.004459 | 0.004902  | 0.008419    | 0.005200  | 0.005244 | 0.000213  |
| 0.003416  | 0.001738 | 0.005602 | 0.006336  | 0.009842    | 0.009436  | 0.011313 | 0.007005  |
| 0.003118  | 0.002050 | 0.005193 | 0.005929  | 0.009469    | 0.009052  | 0.010973 | 0.006706  |
| 0.003040  | 0.006624 | 0.000878 | 0.001620  | 0.005904    | 0.004772  | 0.007365 | 0.004090  |
| 0.003964  | 0.008118 | 0.001757 | 0.001904  | 0.005453    | 0.003365  | 0.005873 | 0.003520  |
| 0.003978  | 0.007459 | 0.000659 | 0.000870  | 0.004993    | 0.003941  | 0.006930 | 0.004446  |
| 0.002479  | 0.006132 | 0.001376 | 0.002163  | 0.006467    | 0.005302  | 0.007680 | 0.003978  |
| 0.003803  | 0.007546 | 0.000974 | 0.001247  | 0.005244    | 0.003842  | 0.006637 | 0.004064  |
| 0.009791  | 0.013842 | 0.007707 | 0.007169  | 0.005860    | 0.003184  | 0.004059 | 0.008004  |
| 0.020568  | 0.022518 | 0.017168 | 0.017359  | 0.013289    | 0.015530  | 0.017686 | 0.019721  |
| 0.020597  | 0.022761 | 0.017242 | 0.017439  | 0.013414    | 0.015379  | 0.017306 | 0.019579  |
| 0.004208  | 0.009352 | 0.004956 | 0.005321  | 0.008574    | 0.005066  | 0.004626 | 0.000721  |
| 0.011042  | 0.015422 | 0.009058 | 0.009094  | 0.008120    | 0.005049  | 0.003762 | 0.008796  |
| 0.011140  | 0.015512 | 0.009139 | 0.009174  | 0.008155    | 0.005127  | 0.003872 | 0.008905  |
| 0.011583  | 0.016049 | 0.009749 | 0.009357  | 0.008955    | 0.005816  | 0.004002 | 0.009227  |
| 0.010180  | 0.014694 | 0.008933 | 0.008575  | 0.008195    | 0.004615  | 0.002582 | 0.007738  |
| 0.010553  | 0.015142 | 0.009497 | 0.009169  | 0.008886    | 0.005253  | 0.002698 | 0.008005  |
| 0.010718  | 0.015024 | 0.009065 | 0.008601  | 0.007542    | 0.004553  | 0.003741 | 0.008571  |
| 0.006153  | 0.009091 | 0.002384 | 0.001593  | 0.002818    | 0.003135  | 0.007078 | 0.006196  |
| 0.006082  | 0.009107 | 0.002347 | 0.001569  | 0.002915    | 0.003010  | 0.006931 | 0.006059  |
| 0.006645  | 0.009005 | 0.002792 | 0.002018  | 0.002389    | 0.004025  | 0.008057 | 0.007083  |
| 0.006684  | 0.009144 | 0.002833 | 0.002044  | 0.002300    | 0.003843  | 0.007890 | 0.007022  |
| 0.007392  | 0.009171 | 0.003540 | 0.002759  | 0.001676    | 0.004148  | 0.008283 | 0.007716  |
| 0.006262  | 0.008891 | 0.002419 | 0.001621  | 0.002690    | 0.003648  | 0.007611 | 0.006573  |



| GROUP 2  |            | CH          | I E 4273 |          |             |            |          |
|----------|------------|-------------|----------|----------|-------------|------------|----------|
| Durham   | Wilmington | Albuquerque | Reno     | Massena  | Schenectady | Cincinatti | Dayton   |
| 0.006016 | 0.004348   | 0.010726    | 0.017307 | 0.009306 | 0.008633    | 0.003725   | 0.004239 |
| 0.006715 | 0.005343   | 0.009869    | 0.016545 | 0.009556 | 0.009470    | 0.004230   | 0.004743 |
| 0.006015 | 0.004398   | 0.010603    | 0.017134 | 0.009116 | 0.008478    | 0.003463   | 0.003977 |
| 0.006121 | 0.004496   | 0.010615    | 0.017218 | 0.009455 | 0.008790    | 0.003838   | 0.004353 |
| 0.008932 | 0.008228   | 0.007300    | 0.013614 | 0.010883 | 0.010659    | 0.005454   | 0.005851 |
| 0.019456 | 0.019597   | 0.006318    | 0.003673 | 0.020544 | 0.020904    | 0.017093   | 0.017243 |
| 0.008882 | 0.008467   | 0.009459    | 0.013763 | 0.007702 | 0.008090    | 0.003744   | 0.003603 |
| 0.009177 | 0.008774   | 0.008322    | 0.012998 | 0.008802 | 0.009091    | 0.004185   | 0.004187 |
| 0.006729 | 0.005821   | 0.011132    | 0.016396 | 0.005602 | 0.005628    | 0.001263   | 0.000874 |
| 0.007273 | 0.006534   | 0.010733    | 0.015821 | 0.005873 | 0.006054    | 0.001902   | 0.001578 |
| 0.006396 | 0.005330   | 0.010611    | 0.016251 | 0.006540 | 0.006365    | 0.000708   | 0.000949 |
| 0.008691 | 0.007823   | 0.008129    | 0.014608 | 0.011362 | 0.010980    | 0.005914   | 0.006375 |
| 0.006843 | 0.005963   | 0.012326    | 0.017292 | 0.004216 | 0.004390    | 0.002272   | 0.001757 |
| 0.007537 | 0.006871   | 0.011306    | 0.016122 | 0.005222 | 0.005566    | 0.002503   | 0.002062 |
| 0.007311 | 0.006586   | 0.011156    | 0.016115 | 0.005398 | 0.005646    | 0.002128   | 0.001709 |
| 0.010045 | 0.009875   | 0.009320    | 0.012675 | 0.008529 | 0.009202    | 0.005671   | 0.005453 |
| 0.010590 | 0.010477   | 0.009290    | 0.012310 | 0.008931 | 0.009186    | 0.006308   | 0.006082 |
| 0.011430 | 0.011390   | 0.009037    | 0.011587 | 0.009276 | 0.010031    | 0.007265   | 0.007048 |
| 0.010068 | 0.009892   | 0.008737    | 0.012292 | 0.008955 | 0.009085    | 0.005686   | 0.005520 |
| 0.007977 | 0.007303   | 0.008718    | 0.014075 | 0.008744 | 0.008734    | 0.003145   | 0.003365 |
| 0.007048 | 0.005889   | 0.009166    | 0.015745 | 0.009416 | 0.009451    | 0.003911   | 0.004402 |
| 0.002292 | 0.000809   | 0.013514    | 0.018573 | 0.006346 | 0.005385    | 0.003115   | 0.003341 |
| 0.002365 | 0.001052   | 0.012812    | 0.017986 | 0.006859 | 0.005999    | 0.002768   | 0.003098 |
| 0.007704 | 0.006592   | 0.017623    | 0.021307 | 0.002083 | 0.001213    | 0.006935   | 0.006599 |
| 0.007498 | 0.006374   | 0.017234    | 0.020948 | 0.001797 | 0.000804    | 0.006541   | 0.006200 |
| 0.006235 | 0.005111   | 0.012724    | 0.017914 | 0.004077 | 0.003965    | 0.000997   | 0.000769 |
| 0.006118 | 0.004958   | 0.011468    | 0.016970 | 0.005614 | 0.005416    | 0.000258   | 0.000000 |
| 0.006639 | 0.005699   | 0.011855    | 0.016994 | 0.004806 | 0.004860    | 0.000825   | 0.000568 |
| 0.006053 | 0.004816   | 0.013258    | 0.017503 | 0.003685 | 0.003437    | 0.001190   | 0.000993 |
| 0.006385 | 0.005347   | 0.011842    | 0.017108 | 0.004955 | 0.004897    | 0.000649   | 0.000392 |
| 0.009661 | 0.009235   | 0.005771    | 0.011915 | 0.011325 | 0.011314    | 0.006224   | 0.006510 |
| 0.020959 | 0.021275   | 0.009758    | 0.003468 | 0.020090 | 0.020833    | 0.017193   | 0.017155 |
| 0.020848 | 0.021143   | 0.009116    | 0.002427 | 0.020301 | 0.020986    | 0.017138   | 0.017129 |
| 0.004879 | 0.002363   | 0.012450    | 0.017773 | 0.007559 | 0.006714    | 0.003042   | 0.003447 |
| 0.010357 | 0.009874   | 0.005514    | 0.012237 | 0.013013 | 0.012838    | 0.007743   | 0.008119 |
| 0.010452 | 0.009979   | 0.005412    | 0.012148 | 0.013098 | 0.012930    | 0.007839   | 0.008213 |
| 0.010724 | 0.010229   | 0.005629    | 0.012428 | 0.013678 | 0.013455    | 0.008400   | 0.008797 |
| 0.009449 | 0.009293   | 0.006705    | 0.013341 | 0.012367 | 0.012094    | 0.006987   | 0.007404 |
| 0.009664 | 0.009495   | 0.006914    | 0.013612 | 0.012860 | 0.012538    | 0.007490   | 0.007926 |
| 0.010165 | 0.009697   | 0.005464    | 0.012094 | 0.012586 | 0.012451    | 0.007339   | 0.007697 |
| 0.008182 | 0.007659   | 0.010300    | 0.015032 | 0.006303 | 0.006707    | 0.003007   | 0.002703 |
| 0.008079 | 0.007534   | 0.010267    | 0.015062 | 0.006325 | 0.006696    | 0.002868   | 0.002577 |
| 0.008867 | 0.008471   | 0.010607    | 0.014912 | 0.006203 | 0.006818    | 0.003926   | 0.003564 |
| 0.008836 | 0.008435   | 0.010441    | 0.014798 | 0.006341 | 0.006926    | 0.003850   | 0.003506 |
| 0.009456 | 0.009149   | 0.010166    | 0.014263 | 0.006861 | 0.007531    | 0.004531   | 0.004209 |
| 0.008449 | 0.007980   | 0.010575    | 0.015099 | 0.006090 | 0.006602    | 0.003408   | 0.003055 |



| Columbus | Toledo   | Oklahoma City | Portland | Pittsburgh | Erie     | Philadelphia | Greenville |
|----------|----------|---------------|----------|------------|----------|--------------|------------|
| 0.004495 | 0.005374 | 0.006470      | 0.018016 | 0.005454   | 0.006308 | 0.006941     | 0.002155   |
| 0.005107 | 0.005856 | 0.005602      | 0.017422 | 0.006211   | 0.006986 | 0.007850     | 0.003140   |
| 0.004257 | 0.005112 | 0.006328      | 0.017812 | 0.005262   | 0.006092 | 0.006828     | 0.002130   |
| 0.004624 | 0.005487 | 0.006359      | 0.017959 | 0.005602   | 0.006448 | 0.007103     | 0.002316   |
| 0.006451 | 0.006703 | 0.002497      | 0.015609 | 0.007865   | 0.008311 | 0.009475     | 0.005883   |
| 0.017882 | 0.017492 | 0.010600      | 0.007867 | 0.018243   | 0.018179 | 0.020401     | 0.017471   |
| 0.004172 | 0.003409 | 0.005793      | 0.014398 | 0.005421   | 0.005117 | 0.007810     | 0.006569   |
| 0.004828 | 0.004278 | 0.004590      | 0.013913 | 0.006205   | 0.006057 | 0.008618     | 0.006676   |
| 0.001331 | 0.000796 | 0.007375      | 0.017104 | 0.002614   | 0.002567 | 0.005027     | 0.004295   |
| 0.002039 | 0.001237 | 0.007115      | 0.016457 | 0.003234   | 0.003010 | 0.005629     | 0.004942   |
| 0.001601 | 0.001858 | 0.006613      | 0.017233 | 0.003075   | 0.003396 | 0.005406     | 0.003458   |
| 0.006898 | 0.007358 | 0.003576      | 0.016786 | 0.008208   | 0.008808 | 0.009601     | 0.005587   |
| 0.001589 | 0.000659 | 0.008748      | 0.017735 | 0.001969   | 0.001395 | 0.004186     | 0.004956   |
| 0.002296 | 0.001187 | 0.007867      | 0.016556 | 0.003144   | 0.002637 | 0.005427     | 0.005509   |
| 0.002014 | 0.000988 | 0.007615      | 0.016643 | 0.003012   | 0.002640 | 0.005359     | 0.005152   |
| 0.005943 | 0.004993 | 0.006606      | 0.012885 | 0.007008   | 0.006472 | 0.009294     | 0.008574   |
| 0.006559 | 0.005586 | 0.006904      | 0.012383 | 0.007589   | 0.007012 | 0.009353     | 0.009215   |
| 0.007529 | 0.006555 | 0.007181      | 0.011510 | 0.008553   | 0.007957 | 0.010255     | 0.009639   |
| 0.006055 | 0.005178 | 0.006031      | 0.012657 | 0.007207   | 0.006748 | 0.009064     | 0.008499   |
| 0.004037 | 0.003941 | 0.004231      | 0.015334 | 0.005512   | 0.005692 | 0.007858     | 0.005066   |
| 0.004865 | 0.005461 | 0.004820      | 0.017526 | 0.006116   | 0.006778 | 0.007978     | 0.003567   |
| 0.002987 | 0.004125 | 0.009411      | 0.019666 | 0.002869   | 0.003944 | 0.003486     | 0.001440   |
| 0.002899 | 0.004038 | 0.008660      | 0.019171 | 0.003170   | 0.004206 | 0.004183     | 0.000715   |
| 0.005952 | 0.006071 | 0.013442      | 0.021392 | 0.004506   | 0.004273 | 0.002748     | 0.007621   |
| 0.005556 | 0.005663 | 0.013060      | 0.021055 | 0.004117   | 0.003865 | 0.002472     | 0.007307   |
| 0.000527 | 0.000484 | 0.009000      | 0.017497 | 0.001110   | 0.000932 | 0.003437     | 0.004275   |
| 0.000337 | 0.000568 | 0.007555      | 0.017804 | 0.002147   | 0.002461 | 0.004519     | 0.003447   |
| 0.000573 | 0.000000 | 0.008168      | 0.017575 | 0.002029   | 0.001799 | 0.004401     | 0.004477   |
| 0.000692 | 0.000779 | 0.009044      | 0.018013 | 0.000631   | 0.000587 | 0.002852     | 0.004259   |
| 0.000387 | 0.000194 | 0.008072      | 0.017769 | 0.001863   | 0.001851 | 0.004272     | 0.004089   |
| 0.007171 | 0.007123 | 0.000524      | 0.013828 | 0.008644   | 0.008875 | 0.010384     | 0.007359   |
| 0.017696 | 0.017932 | 0.013371      | 0.000483 | 0.018814   | 0.018408 | 0.020929     | 0.019266   |
| 0.017686 | 0.017973 | 0.012967      | 0.001041 | 0.018845   | 0.018492 | 0.020984     | 0.019099   |
| 0.003369 | 0.004477 | 0.008263      | 0.019086 | 0.003824   | 0.004834 | 0.004891     | 0.000000   |
| 0.008736 | 0.008908 | 0.001725      | 0.014687 | 0.009657   | 0.010041 | 0.011674     | 0.008088   |
| 0.008832 | 0.008996 | 0.001713      | 0.014614 | 0.009750   | 0.010128 | 0.011771     | 0.008198   |
| 0.009397 | 0.009146 | 0.002495      | 0.015051 | 0.010264   | 0.010693 | 0.012223     | 0.008510   |
| 0.007985 | 0.008287 | 0.002481      | 0.015695 | 0.009369   | 0.009372 | 0.010823     | 0.007023   |
| 0.008485 | 0.008846 | 0.003034      | 0.016092 | 0.009346   | 0.009862 | 0.011202     | 0.007284   |
| 0.008326 | 0.008448 | 0.001216      | 0.014418 | 0.009282   | 0.009628 | 0.011342     | 0.007875   |
| 0.003139 | 0.002182 | 0.006993      | 0.015509 | 0.004207   | 0.003779 | 0.006543     | 0.006031   |
| 0.003030 | 0.002105 | 0.006909      | 0.015576 | 0.004134   | 0.003742 | 0.006485     | 0.005887   |
| 0.003897 | 0.002814 | 0.007629      | 0.015137 | 0.004747   | 0.004115 | 0.006953     | 0.006967   |
| 0.003869 | 0.002809 | 0.007436      | 0.015067 | 0.004772   | 0.004178 | 0.007009     | 0.006887   |
| 0.004590 | 0.003534 | 0.007420      | 0.014433 | 0.005489   | 0.004863 | 0.007701     | 0.007557   |
| 0.003414 | 0.002361 | 0.007416      | 0.015440 | 0.004340   | 0.003785 | 0.006604     | 0.006449   |



| Charleston | Memphis  | Ft. Worth | Austin   | Dallas   | Houston  | Fredericksburg |
|------------|----------|-----------|----------|----------|----------|----------------|
| 0.003264   | 0.002450 | 0.006174  | 0.006946 | 0.006063 | 0.005815 | 0.005427       |
| 0.004217   | 0.001770 | 0.005201  | 0.005948 | 0.005090 | 0.004828 | 0.006354       |
| 0.003387   | 0.002269 | 0.006107  | 0.006946 | 0.005996 | 0.005850 | 0.005327       |
| 0.003392   | 0.002365 | 0.006035  | 0.006791 | 0.005925 | 0.005655 | 0.005589       |
| 0.007250   | 0.001714 | 0.002417  | 0.003750 | 0.002314 | 0.003214 | 0.008629       |
| 0.018778   | 0.014481 | 0.011041  | 0.011078 | 0.011142 | 0.012339 | 0.019465       |
| 0.008362   | 0.004843 | 0.007097  | 0.008763 | 0.007039 | 0.008522 | 0.007144       |
| 0.008467   | 0.004172 | 0.005942  | 0.007626 | 0.005890 | 0.007468 | 0.007784       |
| 0.005987   | 0.004631 | 0.008205  | 0.009190 | 0.008119 | 0.009040 | 0.004294       |
| 0.006663   | 0.004763 | 0.008077  | 0.009131 | 0.007997 | 0.009071 | 0.004980       |
| 0.005234   | 0.003504 | 0.007268  | 0.008661 | 0.007175 | 0.007953 | 0.004364       |
| 0.006673   | 0.002001 | 0.002782  | 0.003495 | 0.002673 | 0.002505 | 0.008664       |
| 0.006450   | 0.006015 | 0.009139  | 0.010538 | 0.009058 | 0.009924 | 0.003876       |
| 0.007159   | 0.005632 | 0.008894  | 0.009927 | 0.008817 | 0.009435 | 0.005017       |
| 0.006824   | 0.005260 | 0.008594  | 0.009624 | 0.008515 | 0.009107 | 0.004841       |
| 0.009843   | 0.006660 | 0.008155  | 0.009366 | 0.008120 | 0.009361 | 0.008845       |
| 0.010452   | 0.007229 | 0.008503  | 0.009694 | 0.008475 | 0.009755 | 0.009441       |
| 0.011341   | 0.007961 | 0.008841  | 0.009998 | 0.008825 | 0.010170 | 0.009890       |
| 0.009780   | 0.006308 | 0.007600  | 0.009303 | 0.007569 | 0.009337 | 0.009001       |
| 0.006820   | 0.002389 | 0.005127  | 0.006685 | 0.005049 | 0.006245 | 0.006771       |
| 0.004899   | 0.000842 | 0.004631  | 0.005602 | 0.004522 | 0.004625 | 0.006540       |
| 0.002092   | 0.005412 | 0.009494  | 0.009932 | 0.009385 | 0.009376 | 0.001952       |
| 0.002024   | 0.004637 | 0.008708  | 0.009178 | 0.008599 | 0.008586 | 0.002651       |
| 0.007930   | 0.010232 | 0.014031  | 0.015246 | 0.013938 | 0.014400 | 0.004279       |
| 0.007685   | 0.009871 | 0.013659  | 0.014884 | 0.013567 | 0.014049 | 0.003984       |
| 0.005671   | 0.005920 | 0.009243  | 0.010567 | 0.009156 | 0.009863 | 0.003006       |
| 0.005118   | 0.004386 | 0.008213  | 0.009110 | 0.008119 | 0.008847 | 0.003598       |
| 0.006056   | 0.005357 | 0.008996  | 0.009930 | 0.008908 | 0.009303 | 0.003856       |
| 0.005510   | 0.006313 | 0.009687  | 0.010977 | 0.009598 | 0.010231 | 0.002532       |
| 0.005675   | 0.005107 | 0.008833  | 0.009744 | 0.008743 | 0.009081 | 0.003607       |
| 0.008880   | 0.003240 | 0.002298  | 0.004001 | 0.002260 | 0.004095 | 0.009237       |
| 0.020815   | 0.016818 | 0.014508  | 0.015238 | 0.014586 | 0.016319 | 0.020375       |
| 0.020621   | 0.016534 | 0.014013  | 0.014643 | 0.014096 | 0.015764 | 0.020363       |
| 0.000899   | 0.004191 | 0.008198  | 0.009076 | 0.008088 | 0.007967 | 0.003356       |
| 0.009307   | 0.004003 | 0.000055  | 0.000871 | 0.000000 | 0.001030 | 0.010389       |
| 0.009418   | 0.004109 | 0.000000  | 0.000852 | 0.000055 | 0.001049 | 0.010489       |
| 0.009131   | 0.004557 | 0.000402  | 0.000454 | 0.000418 | 0.000749 | 0.010903       |
| 0.008165   | 0.003093 | 0.000652  | 0.001095 | 0.000599 | 0.000835 | 0.009493       |
| 0.008302   | 0.003557 | 0.000780  | 0.000896 | 0.000740 | 0.000497 | 0.009842       |
| 0.009176   | 0.003719 | 0.000309  | 0.001159 | 0.000289 | 0.001279 | 0.010087       |
| 0.007771   | 0.005300 | 0.008156  | 0.009283 | 0.008087 | 0.009380 | 0.006028       |
| 0.007631   | 0.005156 | 0.008052  | 0.009178 | 0.007982 | 0.009255 | 0.005938       |
| 0.008677   | 0.006269 | 0.008905  | 0.010028 | 0.008844 | 0.009729 | 0.006636       |
| 0.008610   | 0.006100 | 0.008713  | 0.009846 | 0.008651 | 0.009551 | 0.006650       |
| 0.009296   | 0.006486 | 0.008794  | 0.009949 | 0.008741 | 0.009741 | 0.007372       |
| 0.008163   | 0.005832 | 0.008626  | 0.009742 | 0.008560 | 0.009394 | 0.006209       |



| l               | 1        | 1        | 1        | 1          |              |
|-----------------|----------|----------|----------|------------|--------------|
| Charlottesville | Rutland  | Seattle  | Spokane  | Martinsbur | g            |
| 0.004878        | 0.009312 | 0.018131 | 0.017206 | 0.005642   | Anniston     |
| 0.005796        | 0.009636 | 0.017587 | 0.016659 | 0.006515   | Tuscaloosa   |
| 0.004770        | 0.009155 | 0.017915 | 0.016973 | 0.005505   | Gadsden      |
| 0.005040        | 0.009468 | 0.018083 | 0.017160 | 0.005801   | Talladega    |
| 0.008061        | 0.011255 | 0.015871 | 0.014025 | 0.008557   | Hot Springs  |
| 0.018993        | 0.021324 | 0.009159 | 0.008932 | 0.019178   | Los Angeles  |
| 0.006744        | 0.008542 | 0.014216 | 0.012208 | 0.006609   | Dubuque      |
| 0.007331        | 0.009101 | 0.013834 | 0.011843 | 0.007332   | Ottumwa      |
| 0.003907        | 0.006179 | 0.016905 | 0.014895 | 0.003770   | Fort Wayne   |
| 0.004610        | 0.006564 | 0.016243 | 0.014232 | 0.004424   | South Bend   |
| 0.003873        | 0.006969 | 0.017124 | 0.015124 | 0.004023   | Columbus     |
| 0.008095        | 0.011602 | 0.017098 | 0.015281 | 0.008720   | Monroe       |
| 0.003658        | 0.004888 | 0.017441 | 0.015431 | 0.003189   | Detroit      |
| 0.004730        | 0.006020 | 0.016273 | 0.014263 | 0.004372   | Grand Rapids |
| 0.004520        | 0.006132 | 0.016390 | 0.014379 | 0.004232   | Kalamazoo    |
| 0.008505        | 0.009068 | 0.012593 | 0.010582 | 0.008233   | Minneapolis  |
| 0.009112        | 0.009484 | 0.012057 | 0.010049 | 0.008816   | St. Cloud    |
| 0.009579        | 0.010305 | 0.011157 | 0.009151 | 0.009292   | Fergus Falls |
| 0.008630        | 0.009438 | 0.012422 | 0.010410 | 0.008421   | Mankato      |
| 0.006253        | 0.009307 | 0.015346 | 0.013378 | 0.006471   | Joplin       |
| 0.005971        | 0.009606 | 0.017688 | 0.015778 | 0.006592   | Tupelo       |
| 0.001485        | 0.006062 | 0.019581 | 0.017687 | 0.002407   | Greensboro   |
| 0.002126        | 0.006680 | 0.019123 | 0.017237 | 0.002981   | Hickory      |
| 0.004782        | 0.000854 | 0.020961 | 0.019088 | 0.003984   | Manchester   |
| 0.004470        | 0.000555 | 0.020633 | 0.018758 | 0.003644   | Keene        |
| 0.002780        | 0.004537 | 0.017244 | 0.016191 | 0.002339   | Cleveland    |
| 0.003159        | 0.006021 | 0.017638 | 0.015630 | 0.003170   | Davton       |
| 0.003549        | 0.005398 | 0.017328 | 0.015316 | 0.003245   | Toledo       |
| 0.002387        | 0.004035 | 0.017750 | 0.016726 | 0.001819   | Younastown   |
| 0.003263        | 0.005465 | 0.017545 | 0.015534 | 0.003043   | Findlay      |
| 0.009174        | 0.011865 | 0.014090 | 0.012251 | 0.009044   | Tulsa        |
| 0.019998        | 0.021088 | 0.002359 | 0.003482 | 0.019895   | Eugene       |
| 0.019967        | 0.021270 | 0.003482 | 0.004259 | 0.019911   | Medford      |
| 0.002839        | 0.007395 | 0.019082 | 0.017208 | 0.003695   | Greenville   |
| 0.009849        | 0.013427 | 0.015125 | 0.013416 | 0.010328   | Dallas       |
| 0.009949        | 0.013517 | 0.015059 | 0.013356 | 0.010425   | Fort Worth   |
| 0.010362        | 0.014053 | 0.015547 | 0.013889 | 0.010883   | Waco         |
| 0.009423        | 0.012700 | 0.016085 | 0.014330 | 0.009487   | Longview     |
| 0.009301        | 0.013152 | 0.016523 | 0.014800 | 0.009877   | Lufkin       |
| 0.009550        | 0.013031 | 0.014815 | 0.013073 | 0.009994   | Sherman      |
| 0.005689        | 0.007147 | 0.015256 | 0.013244 | 0.005426   | Milwaukee    |
| 0.005589        | 0.007148 | 0.015334 | 0.013323 | 0.005348   | Racine       |
| 0.000000        | 0.007177 | 0.014807 | 0.012800 | 0.005074   | Green Bay    |
| 0.000358        | 0.007208 | 0.014752 | 0.012744 | 0.006000   | Annleton     |
| 0.000000        | 0.007260 | 0.01/006 | 0.012000 | 0.006717   | Wasau        |
| 0.007002        | 0.007003 | 0.0151/2 | 0.012030 | 0.005568   | Sheboygan    |
| 0.0000000       | 0.007001 | 0.0101-0 | 0.010100 | 0.0000000  | Cheboyyan    |

# CH E 4273 Appendix G:



# **Taxes by Location**

117



| Cities       | States         | State sale | Property |
|--------------|----------------|------------|----------|
| Anniston     | Alabama        | 4          | 30       |
| Tuscaloosa   | Alabama        | 4          | 30       |
| Gadsden      | Alabama        | 4          | 30       |
| Talladega    | Alabama        | 4          | 30       |
|              | Alaska         | None       |          |
|              | Arizona        | 5.6        |          |
| Hot Springs  | Arkansas       | 5.125      | 20       |
| Los Angeles  | California     | 7.25       | 30       |
|              | Colorado       | 2.9        |          |
|              | Conneticut     | 6          |          |
|              | Deleware       | None       |          |
|              | Florida        | 6          |          |
|              | Georgia        | 4          |          |
|              | Haiwai         | 4          |          |
|              | Idaho          | 5          |          |
|              | Illinois       | 6.25       |          |
| Fort Wayne   | Indiana        | 6          | 33       |
| South Bend   | Indiana        | 6          | 33       |
| Columbus     | Indiana        | 6          | 33       |
| Ottumwa      | Iowa           | 5          | 23       |
| Dubuque      | Iowa           | 5          | 23       |
| •            | Kansas         | 5.3        |          |
|              | Kentucky       | 6          |          |
| Monroe       | Louisiana      | 4          | 25       |
|              | Maine          | 5          |          |
|              | Maryland       | 5          |          |
|              | Massachusetts  | 5          |          |
| Detroit      | Michigan       | 6          | 34       |
| Grand Rapids | Michigan       | 6          | 34       |
| Kalamazoo    | Michigan       | 6          | 34       |
| Minneapolis  | Minnesota      | 6.5        | 34       |
| St. Cloud    | Minnesota      | 6.5        | 34       |
| Fergus Falls | Minnesota      | 6.5        | 34       |
| Mankato      | Minnesota      | 6.5        | 34       |
| Tupelo       | Mississippi    | 7          | 34       |
| Joplin       | Missouri       | 4.225      | 25       |
|              | Montana        | 0          |          |
|              | Nebraska       | 5.5        |          |
|              | Nevada         | 6.5        |          |
| Manchester   | New Hampshire  | 0          | 58       |
| Keene        | New Hampshire  | 0          | 58       |
|              | New Jersey     | 6          |          |
|              | New Mexico     | 5          |          |
|              | New York       | 4          |          |
| Greensboro   | North Carolina | 4.5        | 34       |
| Hickory      | North Carolina | 4.5        | 34       |



|            | North Dakota   | 5    |    |
|------------|----------------|------|----|
| Cleveland  | Ohio           | 5    | 25 |
| Dayton     | Ohio           | 5    | 25 |
| Toledo     | Ohio           | 5    | 25 |
| Youngstown | Ohio           | 5    | 25 |
| Findlay    | Ohio           | 5    | 25 |
| Tulsa      | Oklahoma       | 4.5  | 34 |
| Eugene     | Oregon         | 0    | 34 |
| Medford    | Oregon         | 0    | 34 |
|            | Pennsylvania   | 6    |    |
|            | Rhode Island   | 7    |    |
| Greenville | South Carolina | 5    | 34 |
|            | South Dakota   | 4    |    |
|            | Tennessee      | 7    |    |
| Dallas     | Texas          | 6.25 | 34 |
| Fort Worth | Texas          | 6.25 | 34 |
| Waco       | Texas          | 6.25 | 34 |
| Longview   | Texas          | 6.25 | 34 |
| Lufkin     | Texas          | 6.25 | 34 |
| Sherman    | Texas          | 6.25 | 34 |
|            | Utah           | 4.75 |    |
|            | Vermont        | 5    |    |
|            | Virginia       | 3.5  |    |
|            | Washington     | 6.5  |    |
|            | West Virginia  | 6    |    |
| Milwaukee  | Wisconsin      | 5    | 34 |
| Racine     | Wisconsin      | 5    | 34 |
| Green Bay  | Wisconsin      | 5    | 34 |
| Appleton   | Wisconsin      | 5    | 34 |
| Wasau      | Wisconsin      | 5    | 34 |
| Sheboygan  | Wisconsin      | 5    | 34 |
|            | Wyoming        | 4    |    |
|            | Washington DC  | 5.75 |    |