

Chemical Engineering Team Tejas Patel, John Truong, Tony Tran, Trenika Iland, Bambo Ibidapo-Obe, Jeremy Constantino, Adam Adler, Blake Adams

Presentation Outline

Purpose

- What is biorefining
- Plant Design
 - Fermentation processes
 - Purification processes
 - Utilities
 - Waste
 - Economics of each process
- Business Plan Proposal Mathematical Model
 - Model Description
 - Inputs into the Model
 - Results of Model
 - Sensitivity and Risk of Model

Overview of Biorefining

What is a bio based product?
 Made from renewable resources
 Plant material as main ingredient

- Biodegradable

Why bio-refining?

- National and local policies promote bio-refining
- Strict environmental regulations
 - Increased cost of products made from fossil fuels
 - Extraction, processing, disposal
- Advantages
 - Rural economic development, lower economic costs, environmentally safe

http://www.pnl.gov/biobased/docs/prodplas.pdf

Scope of Project

Each of these acids are generated using nearly identical fermentation processes with different bacteria which dictate the end result

Scope of Process

http://www.pnl.gov/biobased/docs/prodplas.pdf

Market Analysis / Demand

Table 1: Market Analysis			
	Demand	Growth Outlook	Price
Acetic	2002: 5.6M lbs	Historical (1997-2002): 1.2% per year	Historical (1997-2002): High \$0.27 /lb
Acid	2006: 6.1 M lbs	2% per yr through 2006 in US	Low \$0.25 /lb
		3-4% /yr world wide	Current: Low \$0.465 /lb,High \$0.52 /lb
Citric	2003: 5.35 M lbs	Historical (1996-1995): 5.5% /yr	Historical (1996-1999): prices fell
Acid		3.5% expected over the next 5 yrs	from \$0.52 to \$0.42 / lb
			Current: \$0.65 /lb
Fumaric	2003: 4.34 M lbs	Historical (1994-1999): 1.6% /yr	Historical (1994-1999): High \$0.65 /lb
Acid		1.6% /yr through 2005	Low \$0.58 /lb
			Currently: \$0.65 /lb industrial grade
			\$0.85 /lb food grade
Succinic	PVP (polyvinly pyrrolidinone)	6-10% /yr Overall	PVP sells for \$3.00-\$8.00 /lb
Acid	50M lbs/yr		depending on grade
	Itaconic acid - 20M lb/yr world-wide		Itaconic acid sells for \$2.00 /lb
Lactic	50,000 tons/yr total	food/beverage: 3.5 - 4% /yr b/n 2002-2007	Currently-
Acid	50 M lb/yr for food use	pharmaceuticals, personal care: 5.2% /yr	food grade \$0.80 /lb
	300 M lb/yr for PLA	b/n 2002-2007	technical grade \$0.85 /lb
		Industry: PLA 22% /yr, Ethyl lactate 5% /yr	PLA \$1.00-1.50 /lb
		b/n 2002-2007	
Ethanol	Industrial (synthetic and fermentation)-	Historical (1996-2001): 7.8 % /yr	Industrial-
	2001: 269M gal	10.5% yr through 2005 projected	High \$2.80 /gal,Low \$1.80/gal
	2005: 287M gal projected		Currently \$2.65 /gal
			Fuel (grade)-
	Fuel, Food, Beverages (all fermentation)-		High \$1.81 /gal ,Low \$0.99 /gal
	2001: 1.7M gal		Currently \$1.55 /gal
	2005: 2.79M gal projected		
Propionic	2002: 204M lbs	Historical (1997-2002): 1.2% /yr	Historical(1997-2002): High \$0.49/lb
Acid	2006: 219M lbs projected	1.8% /yr through 2006 expected	Low \$0.41/lb
(Sodium Propionate)			Current: \$0.51 -\$0.54/lb

www.the-innovation-group.com/ChemProfiles.htm

Market Demands for Products Years 2005-2025

Assumptions:

-growth due to environmental profile

-industrial applications increase due to biodegradable advantages

Price Projections for Products Years 2005-2025

Assumptions:

-an increase in demand will result in over capacity and competition among suppliers

-as a result, a reduction of prices with a corresponding increase in the amount of sales is expected

-more competition will drive prices down and supply up

Process Description

Simulations for Fermentation/Purification Model Descriptions Fermentation - Formation of each acid - Bacteria Considerations Conversions Simulations - Outline of Fermentation Outline of Purification Processes

Models

Citric Acid

- Succinic Acid
- Propionic Acid
- Fumaric Acid
- Acetic Acid

Fermentation

Glucose + Water Bacteria	Acid		Similar processes Formation – 10:1 mass ratio of water to glucose Heat sterilization Fermentation		
Bacteria Name	Yield	Product	 Aminionia Batch Reaction 		
Clostridium thermocellum Aspergillus niger	100% 66.7%	Acetic Acid			
Anaerobiospirillum succiniciproducens Propionibacterium acidipropionici	87% 66.7%	Succinic Acid Propionic Acid	Ethyl Lactate Subgroup		
Rhizopus Saccharomyces cerevisiae	69% 66.7%	Fumaric Acid			
Lactobacillus delbrueckii	95%	Lactic Acid			

Bacteria

- All the fermentation processes are catalyzed by the appropriate bacteria
- They are grown along with inoculum seeds in small laboratory vessels
- Once the nutrients and inoculum seeds are grown sufficiently, they form a slurry which is transferred to the fermentors
- Cost of using bacteria was found to be \$0.80 per ton

Purification Processes

- Citric Acid
- Succinic Acid
- Propionic Acid (Sodium Propionate)
- Fumaric Acid
- Acetic Acid

Citric Acid

Ca(OH)₂: 35000 kg/batch

23.2 %mass

Acetic Acid

Citric Acid

FCI vs Capacity

Annual Operating Cost Citric Acid

Capacity	35 MM lb		
Raw materials	12.68		
Operating labor	1.34		
Utilities	3.01		
Maintenance and repairs	4.43		
Operating supplies	1.01		
Total (\$ MM)	22.50		

Operating cost breakdown

Raw materials

Citric Acid

Operating cost vs Production

Model Considerations

	Acetic Acid	Succinic Acid	Citric Acid	Propionic Acid
Fermentation Broth Mass (%)	4.83	4.24	3.79	2.97
Final Conversion to Sell(%)	63.3	59.9	66.0	48.1

Mathematical Model?

Venture Design Options

Irreducible Structure

Mathematical Model?

•Minimize Operating Cost

•Maximize Net Present Value

•GAMS Optimization Software

Business Plan (Mathematical Model)

Input

- FCI based on Capacity
- Operating Costs based on Capacity
- Raw Materials & Chemicals
- Locations & Distances
- Demand
- Material & Mass Balances
- Product Prices

Output

- Plant location
- Plant capacity
- Plant expansion (2 year intervals)
- Product markets
- Raw materials

NPW

Mathematical Model

Deterministic

-Maximizes the Net Present Value

-Disregards possible variation in Inputs

Stochastic

Mathematical Models

Two mathematical models:
Biorefining

Seven different processes

Ethyl lactate

 Research analysis on one product (ethyl lactate)

Raw Material Locations

http://www.usda.gov/nass/aggraphs/cropmap.htm

- Raw material density graphs were used to determine potential locations of raw material supply
- USDA-NASS: Crop yield by county for 2002
- Data was obtained for each of the 5 raw materials considered
 - Wheat
 - Oats
 - Corn
 - Rice
 - soybeans

Raw Material Locations

30 locations were considered as possible sources for raw material supply
Locations were chosen based on crop yield of raw

materials

Pheonix, Yuma, Bakersfield, Fresno, Napa, Greeley, Pueblo, Louisville, Cedar-Rapids, Dubuque

- Mountain-Home, Danville, Peoria, Quincy, Evansville, Fort-Wayne, Meade, Bastrop, Denton, Billings
- Lexington, Clovis, Las-Cruces, Roswell, Cincinatti, Dayton, Heppner, Dumas, El-Paso, Yakima

Potential Plant Locations

http://www. www.publicforuminstitute.org/nde/reports/lma.pdf

Economic growth of cities was used to determine potential plant locations

- Plant locations considerations
 - Population
 - Number of existing companies in area
 - Expected rate of area growth

Potential Plant Locations

- 46 Potential plant locations
- Location choices Based on:
 - Agricultural supply
 - Economic growth of location

- Anniston, Tuscaloosa, Gadsden, Talladega, Hot-Springs, Los-Angeles, Dubuque, Ottumwa, Fort-Wayne
- South-Bend, Columbus, Monroe, Detroit, Grand-Rapids, Kalamazoo, Minneapolis, St-Cloud, Fergus-Falls
- Mankato, Joplin, Tupelo, Greensboro, Hickory, Manchester, Keene, Cleveland, Dayton, Toledo
- Youngstown, Findlay, Tulsa, Eugene, Medford, Greenville, Dallas, Ft-Worth, Waco, Longview, Lufkin
- Sherman, Milwaukee, Racine, Green-Bay, Appleton, Wasau, Sheboygan

Product Market Locations

Markets broken down by the following Regions:

- West
- Central
- East
- The markets are for all 7 processes

Material Balance Equations

 $aA + bB \rightarrow cC + dD$

Mass flow rate of product/reactant = stoichiometric coefficient * mass flow rate of reactant

 Mass flow rate of *product/reactant* = Σ of the process' mass flow rate of chemicals from one process to another + Σ of mass flow rate of *sold/purchased* chemicals

Reactants

	Reactants					
Process	H2O	Glucose	Salt	Air	Cal Hyd	Sulf Acid
Succinic Acid	2.3	3	0.36	4.22	1.65	3.93
Citric Acid	2.2	3	3.14	6.14	2.93	3.69
Lactic Acid	2.1	3	3.10	5.41	-	-
Ethanol	2.3	3	3.10	5.41	-	-
Acetic Acid	2.3	3	2.05	3.37	-	-
Propionic Acid	2.4	3	1.30	4.13	-	-
Fumaric Acid	2.1	3	2.36	5.18	-	-

This relationship is based on the reaction coefficient of each material

Compared to the main chemical & the conversion data for the reaction.

Products

	Products			
Process	Product	CO 2	Gypsum	Calcium
Succinic Acid	1	0.067	0.63	-
Citric Acid	1	0.141	0.74	0.089
Lactic Acid	1	0.101	-	-
Ethanol	1	0.101	-	-
Acetic Acid	1	0.069	-	-
Propionic Acid	1	0.134	-	-
Fumaric Acid	1	0.101	_	-

Relationship between the main chemical and other products in the reaction

- The relationship is based on mass balance rather than mole balance
- All the main chemical will have *mu* value of 1

Model Constraints

- Constraint on Capacity: Capacity of the process a mass flow rate of the product
- Constraint on expansion: it must be over \$10,000 FCI
- Supply of chemicals ≥ sum of the process' mass flow rate of purchased chemicals
- Demand of chemicals ≥ sum of the process' mass flow rate of sold chemicals
- Limit on TCI: Manually defined for set maximum TCI

Model Equations

- Cash Flow = Revenue (Revenue Depreciation)*Taxes
- Revenue = Sales Total Costs
- Total Costs = Raw Material Costs + Operating Costs
- Operating Costs = operation cost based on capacity (\$/lbm) * mass flow rate of product + fixed investment + transportation costs

Objective Function to Maximize

$$NPW = \sum_{plant} \left(\sum_{tp} \frac{CF_{plant,tp}}{(1+i)^{tp}} + \frac{(Vs_{plant} + Iw_{plant}) * FCI_{plant}}{(1+i)^{tp}} - TCI_{plant} \right)$$

CF = Cash Flow

tp = time period, 1 time period is 2 years total of 11 time periods from 2005-2027

i = nominal interest rate, 5%
Vs = salvage value, 10% of FCI
Iw = working capital, 15% of FCI
Project Lifetime – 22 years

Ethyl Lactate Overview Extension of Previous Study 2 Processes: Ethanol & Lactic Acid - Esterification-Pervaporation Ethyl Lactate Create Real World Fit Model - Biomass/Waste Water - CO₂ Production/Disposal Mathematical Model Considerations - Provide insight to large process model

Biomass/Waste Water

Biomass Waste Possibilities

- Return to fermentation unit for reuse
- Sale biomass product to markets

Waste Water

Capital cost for water purification exceed storage cost

Municipal water storage \$100,000/yr

Mathematical Model Input

Biomass sales and waste water costs

Net Increase in NPV by 0.1%

CO₂ Analysis

Sale and Shipping of CO₂
 500 ton/yr CO₂ - \$75/ton

 Minimal profit
 CO₂ Recovery unit
 \$20 million capital cost

 Release CO₂ into Atmosphere

- Aug. 23, 2003, President Bush: *Clean Air Act* says that CO₂ can't be regulated as a pollutant
- Petroleum based products emit 4000X ethanol processes

Model Considerations

Raw materials

- Corn, wheat, barley, oat, beets, rice

Cost at markets

- Raw material to glucose conversions

Transportation Modeling

Transportation Cost

- Cost to ship raw materials and products
 - Linearly variable with distance
- Distance to raw material and product markets determined
- Amount shipped

Market Demand/Capacity

Demand

- Determined for each product market
- 1 year later
 - More competition
- Assumed 80% of Demand Supplied to Market
- Actual demand determined by model

Capacity Constraints/Expansion

- No expansion first two years
- Cannot expand 2 years consecutively

Depreciation/Investing

Depreciation

- Continuous straight line depreciation
- Equipment depreciable for 10 year period

Capital Investments

- 1 initial capital investment
- Revenue used to re-invest in capital investments for future expansions

Estimated Sale Price

Results

Single Raw Material: – Corn Build three plants immediately: - Youngstown, OH – Toledo, OH – Anniston, AL Build one plant in year #5: – Dayton, OH NPW = \$38.8 million Investment = \$40.2 million ■ ROI = 4.8%

Locations

Total Product Flow Rate

Capacity vs. Flow - Anniston

Plant Operating Costs

Uncertainty Results Single Raw Material: – Corn Build three plants immediately: - Toledo, OH – Dayton, OH – Anniston, AL \blacksquare ENPV = \$34.4 million ICI = \$44.0 million ■ ROI = 3.9% Value at Risk at 5% = \$14.3 million

Locations

Product Flow Rate

Risk Analysis – Ethyl Lactate

Risk Histogram – Ethyl Lactate

Ethyl Lactate Conclusion

With uncertainty

- 3 plants
- -NPV = \$34.4 million
- -ICI = \$44.0 million

Use this model for all processes

Mathematical Model Results

- Plant Location
 - Dubuque, Iowa
- Raw Material
 - Corn
- Maximum Initial Capital Available
 - \$150 million
- Net Present Value
 - \$295 million
- Return on Investment
 - 10%

Potential Plant Production

Citric Acid Aspergillus nig

- Fixed Capital Investment: \$120,000,000
- Annual Operating Cost: \$40,000,000

- Annual Production: 81 million pounds
- Fixed Capital Investment: \$130,000,000
- Annual Operating Cost: \$42,000,000

- Fixed Capital Investment: \$9,600,000
- Annual Operating Cost: \$3,000,000

- Annual Production: 3 million pounds
- Fixed Capital Investment: \$2,200,000
- Annual Operating Cost: \$600,000

Plant Production

Market Distribution

Capital Investment Distribution

Revenue From Product Sales

Uncertainty Analysis

Risk Histogram-Biorefining

Histogram

Conclusion

Further Questions...

