Super Batteries Final Presentation

Presentation Outline

- Project Goal
- The basics of batteries
- How a battery works
- Why use super batteries
- Market Analysis
- Battery synthesis

- Plant Location
- Transportation
- Environmental Impact
- Life Cycle Analysis
- Economic Analysis
- Conclusions

Project Goal

Design a plant to make ingredients for super iron batteries

The Basics of Batteries

Definition:

Batteries are devices that translate chemical energy into electrical energy

Standard AAA Dimensions

Battery Basics

The 7 basic parts

- -A) Container
- B) Collector
- -C) Electrodes
- D) Cathode
- E) Anode
- -F) Electrolyte
- -G) Separator

Start with an empty steel can – the battery container.

 A cathode mix of Super-Iron carrying a naturally occurring positive electrical charge is molded to the inside wall of the empty container.

 A separator paper is inserted to keep the cathode from touching the anode.

The anode, which carries a negative electrical charge, and potassium hydroxide electrolyte are then pumped into each container.

 The brass pin, which forms the negative current collector, is inserted into the battery, which is then sealed and capped.

How a battery works

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

Fe (VI) + 3 $e^- \rightarrow$ Fe (III)

Advantages of Iron (VI)

Advantages: Energy Storage

Including a iron

 (VI) cathode in a
 standard battery
 increases the
 energy storage
 capacity by 50%.

Our Choice of Cathode

Our choice of cathode material is based on cost and performance. $\blacksquare 65 \text{ wt }\% \text{ Na}_2\text{FeO}_4$ $\blacksquare 5 \text{ wt } \% \text{ KMnO}_{4}$ $\blacksquare 30 \text{ wt }\% \text{ CF}_{x}$

Advantages: Environmental

Standard Alkaline Battery : Super Battery Discharge Reaction:

 $2MnO_2 + Zn \rightarrow ZnO + Mn_2O_3$

 $Na_2Fe(VI)O_4 + Zn \rightarrow$ $Fe(III)_2O_3 + ZnO + Na_2ZnO_2$

 $2Mn^{-}+2e^{-} \rightarrow 2Mn^{2-}$

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

 $Fe(VI)^{6+} + 3e^{-} \rightarrow Fe(III)^{3+}$

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

The most important objective of a company: To make profit The most important person in a company: The consumer

A strategic plan defines a company's overall mission and objectives. The goal is to build strong and profitable connections with consumers.

Points of Sale

Provides enough power to last 50% longer than traditional AAA batteries and 200% longer in high drain applications (Licht)

Contains fewer toxic metals than traditional batteries and its super iron cathode degenerates into environmentally friendly rust

Will sell for a competitive price to the AAA batteries already on the market

Competitors?

SuperBattery's total capital investment: \$472,000 Energizer's total capital investment: \$3 billion

Conclusion:

SuperBattery's market is 0.01% the size of Energizer's market

Segmentation of Market

The process of niching offers smaller companies the opportunity to compete by focusing their limited resources on serving niches overlooked by larger competitors.

- Consumers are grouped and served in various ways based on the following factors:
 - Geographic
 - Demographic
 - Psychographic
 - Behavioral
 - Social-Cultural
 - Special Interest Groups

- Geographic Segmentation
- A profitable company must pay attention to geographical differences in needs and wants.

Demographic Segmentation

Demographic segmentation divides the markets into groups based on variables such as age, gender, family size, family life cycle, income, occupation, education, religion, race, and nationality

Segmentation Variables

Geographic

World region or country: US
Country region: Pacific, East South Central, East North Central, New England, Middle Atlantic
City or Metro size: 500,000-1,000,000; 1,000,000-4,000,000; 4,000,000 or over
Density: Urban
Climate: Northern, Southern

Segmentation Variables

Demographic

- Age: Under 6, 6-11, 20-34, 35-49
- Gender: Male, Female
- Family Size: 1-2, 3-4, 5+
- Family Life Cycle: Young, single; young, married, no children; young, married, children; older, married, children; older, married, no children; older, single
- Income: \$50,000-over
- Occupation: Professional and technical; managers; officials, and proprietors; clerical, and sales; supervisors, students, homemakers; volunteer workers
- Education: High school graduate, some college, college graduate
- Generation: Generations X,Y,Z, echo boomer
- Race: N/A

Demographics come into play here because different ideas appeal to different groups consisting of different characteristics.

Time of adoption of innovation

Adopter Characterization

- Innovators young, better educated, higher income; venturesome
- Early Adopters leaders in the community; adopt new ideas early but carefully; trendsetters
- Early Majority deliberate; adopt new ideas before the average person
- Late Majority skeptical; older in age and wait until the reviews are massively published
- Laggards tradition bound and brand loyal; won't change until the new trend becomes tradition

Large market appeals to the idea of MORE POWER FOR YOUR MONEY

Segmentation for a small new company leads to THE ENVIRONMENTALLY FRIENDLY BATTERY

Population Characteristics

City National Average Austin, TX Seattle, WA Portland, OR San Francisco, CA Charlotte, NC NYC, NY Washington, DC

Population 52,000 587,900 537,200 503,600 746,800 520,800 7,428,200 519,000

Economical Demographics

City	Cost of Living Index	Median Income (\$)	Per Capita Income(\$)
National Average	100	53,475	20,710
Austin, TX	102.9	50,179	20,118
Seattle, WA	135.7	50,993	26,516
Portland, OR	127	51,156	20,030
San Francisco, CA	209.5	74,773	27,727
Charlotte, NC	108.3	58,713	21,862
NYC, NY	189.1	60,765	24,877
Washington, DC	120.9	65,083	26,855

SF Demographics

- 8.2% children ages 5-14
- 48% ages 20-45
- 44.3% of all families having children
- 45.6% of all families young and single
- 1.7% unemployment rate
- 56.8% making \$50,000 and over per household

Cost Comparison

BATTERY PRICES ACCORDING TO CVS PHARMACIES

City	Sales Tax (%)	AAA Duracell 4pk (\$)	AAA Duracell 8pk (\$)
National Average	5.42	N/A	N/A
Austin, TX	8.05	3.17	5.89
Seattle, WA	8.35	3.39	6.09
Portland, OR	0.00	2.99	5.89
San Francisco, CA	8.25	4.99	8.79
Charlotte, NC	6.15	3.19	5.89
NYC, NY	8.25	4.59	8.69
Washington, DC	5.75	3.79	6.49

Cost Comparison

- CVS Pharmacy has a standard markup for all batteries – about 25%
- According to the price list above, San Francisco has the highest cost of batteries
- Duracell sells their batteries to CVS Pharmacy for about \$1.00/battery

CAN SUPER BATTERY COMPARE?
Cost Comparison

- For Super Battery to be cost competitive, a battery must be sold for \$1.00/battery
- The cost per battery for production is \$0.86
- \$0.14 profit per battery is about 16%
- If a higher profit margin is needed, extra investment would have to be dumped into advertisements and promotions stressing the environmental aspect of the battery
- Economics will discuss this in further detail

Battery Synthesis

Cathode Synthesis

Battery Design: Cathode

Top Cross-Sectional View of Battery:

The cathode is the material between the casing and the separator.

The volume of the cathode is an estimated 49 % of the battery interior.

Cathode Challenge

■ To create a cathode based on Iron (VI).

This process has never been completed on an industrial scale.

Very little information exists concerning the chemical characteristics of Iron (VI) and its different compounds.

Chemists vs. Engineers

City water

Chemists vs. Engineers Chemists: Cathode synthesis scaledup directly from laboratory work: Weekly Cost: \$4,889,000

Engineers: Modifications throughout cathode synthesis:
 Weekly Cost: \$39,600

Iron (VI) Super Battery Cathode

- Mass Breakdown of Cathode Components:
 - -2.38 g Na₂FeO₄
 -0.183 g KMnO₄
 -1.098 g CF_x
 -3.66 mL KOH (13.5 M)

Cathode Synthesis PFD

$Fe(NO_3)_3 \cdot 9H_2O + 3/2NaClO + 5NaOH \rightarrow Na_2FeO_4 + 3/2NaCl + 3NaNO_3 + 23/2H_2O$

Anode Synthesis

Anode Synthesis: Why?

- Provide low cost negative electrodes at a high voltage
- Low weight addition to battery
- Lowest possible oxidation state for anode material
- High discharge capability
- Not susceptible to corrosion in saturated KOH to stabilize iron (VI)
- The alternative cadmium or mercury additives may be cheaper, but not environmentally friendly

Common Methods

- Using pure zinc metallic powder mixed with electrolyte
- Problem: hydrogen is generated by the zinc and causes a corrosion reaction leads to increased pressure inside the battery and electrolyte leak
- Kneading zinc powder, gel forming materials and magnesium with a small amount of water
 Problem: Too much time for electrolyte to penetrate into the zinc electrode paste

Common Method

Using a mixture of pure zinc and either indium, aluminum, or lead to prevent corrosion

Problem: Inability of the zinc paste to hold it's shape in the battery which lead to leakage and early loss of charge capability

Zinc History

- 1982 Jones US Patent 4358517 explains the effectiveness of using carbon hydroxide mixed with potassium hydroxide as the electrolyte solution
- 1990 JP 227729/89 discussed the role of a gelling agent such as carboxymethyl cellulose

Problem: With time, the electrode falls out of gel state due to its large specific gravity or contact between zinc particles become unstable

Ten years ago the method involved an addition of mercury in order to prevent corrosion

Problem: Environmentally Unacceptable

1996 Charkey US Patent 4084047 discusses beneficial oxide additives that enhance electrode conductivity, particularly Bi₂O₃

Goals

- Minimize the shape change
- Provide a stable construction to achieve prolonged cycle life
- Improved capacity under heavy current discharge loads and low temperature
- Improved stability during storage
- Maximum energy density
- Avoid toxicity to the environment
- To provide the highest utilization of the iron (VI) electrode as possible in order to be cost effective

Anode Synthesis

Mass Breakdown per Battery:

- 0.554 g of calcium oxide
- 1.4674 g of zinc oxide (volume fraction 0.51 ZnO:0.32 CaO)
- 0.1523 g of bismuth oxide
- 0.2547 g of hydroxy-et cellulose (10%wt)
- 0.1247 g PTFE (known as the binder, 5%wt)
- 2.5472 mL KOH

Components

Zinc Oxide

- important material for obtaining good dispersion in a short time
- Ability to absorb large quantities of electrolyte solution between particles
- Has high capability to combine the particles of the zinc electrode material with electrolyte

Calcium Oxide

- Shown to significantly improve performance by maintaining stability (preventing migration) in order to hold the capacity of the battery longer
- Reduce the solubility of active material through formation of CaZn₂(OH)₆

Components

Bismuth Oxide

- Provides a conductive matrix which is more electropositive than zinc
- Easily reduced to metal
- Considered an inorganic inhibitor

PTFE

- Binder aids in connecting all the elements
- Enhances oxygen recombination with the formation of calcium zincates at the zinc electrode
- Affinity for reacting with oxygen
- Aids in rapid oxygen recombination during discharge

Anode Synthesis

Reasoning

- 1. Metallic oxide (calcium oxide) adds stability without altering other components of the battery
- 2. Capable of keeping the low oxidation level necessary
- 3. High life cycle
- 4. Good rate capability
- 5. Excellent mechanical characteristics
- 6. Capable of mass production

Casing Material

304 Cold Rolled Stainless Steel

- manufactured in a variety of shapes and sizes cheaply

- Durable with high corrosion resistance

Circular cylindrical fabricated as a deep drawn can

- Reduces the number of fabrication processes
- Enhances the case integrity
- Allows for less variation in the diameter
- Produces better quality welds increasing shelf-life

Casing Material

Battery Dimensions (AAA)

Wall thickness-.635 mm

■ Length – 44.5 mm

■ Diameter – 10. 5mm

Header Material

- Glass-to-metal sealed electric terminal
- Fit is important to obtain high quality welding
- Thickness 3.175 mm

Ultrasonic Metal Welding

- Cold-phase friction welding technique
- Surfaces subjected to high frequency oscillations while being rubbed together under pressure
- Molecules on the surfaces mix with one another, creating a firm bond
- Weld cycles typically under one-half seconds allowing high productivity rates

Separator

Microporous membrane

- Prevents contact between the positive and negative electrode
- Allows ions to move freely between the anode and the cathode without internal shorts

Insulator

 Permeablility, strength, ability to maximize ionic conductivity

Collector

Electrical connection between the porous cathode and the positive terminal of the battery

Brass pin

- 20 mm long, 1.5 mm diameter
- Brass is a high purity homogeneous alloy
- good corrosion resistance
- high surface quality that minimizes the formation of hydrogen inside the battery

Construction Process

Packaging

- Ensure product quality
- Important role in the marketing strategy
- Sleek plastic cylinders made from ecologically friendly recyclable and reusable materials
- Self-contained shipper that doubles as a floor display
- Uses 40 percent less shelf space than that of other battery suppliers

Plant Location

Plant Location

Shipping Cost

-Import Raw Materials- Export Complete Super Battery

Raw Materials

Locations Considered

Shipping Costs

Transportation Costs

Factors Considered

	Utilities	Property Tax	Sales Tax
Wichita, KS	105.4	11.5%	5.30%
Indianapolis, IN	98.9	13.8%	6%
Philadelphia, PA	144.5	25.4%	6%
Charlotte, NC	97.2	12.4%	4.50%

The plant will be located in Charlotte, NC.
Transportation

Different Modes of Transportation

- 20, 50, or even 100 carload movements
- lacks flexibility to service all markets
- deliveries can vary by a number of days
- ability to move large quantities
- long distances
- relatively low cost

Different Modes of Transportation

Trucking

- High-speed intercity movement
- Smaller shipments
- More-frequent deliveries

Trucking

 Trucking makes up 15% of all vehicles on US roadways.

Trucking involved in only 3% of accidents.

Environment

Method to Protect Environment

The most effective measure in preserving our environment is not to react to environmental accidents, but to prevent accidents and spills.

Sources of Environmental Harm

Point Source Pollution (PS)
 – Spills or disposal into local sewer.

Non-Point Source Pollution (NPS)
 Uncontrolled spills or disposal into surrounding environment.

Preventing Environmental Harm

Prevention during.....

- Receiving hazardous materials.
- Fabrication
- Plant transportation
- Storage
- Disposal

Non-Point Source Spill (NPS) Prevention

- Preventing truck incidents with Camel Fiberglass Drive-Thru Systems
 - Contain a 500 gallon spill

Non-Point Spill (NPS) Prevention

Preventing rail incidents with the "Star Track" systemContain a 500 gallon spill.

Non-Point Spill (NPS) Prevention

Chemically resistant polyurethane box curds are installed around the parameter

Non-Point Source Spill (NPS) Prevention

Transportation within the plant

Point source (PS) pollution prevention

Conical plug drain seal and drain protector safety seal

Storage Color Code

- Blue: Poison
- Red: Flammable liquid
- Yellow: Store away from flammable or combustible materials (oxidizers)
- White: Store in a corrosion-proof area
- Orange: General chemical storage
- Striped: Store individually. Material is incompatible with other materials in the same color class.

Dangers Inside Plant

- Potassium Hydroxide, KOH
 - POISON! DANGER! CORROSIVE!
 - Special spill and leak measures inside and outside of plant
- Occupational Exposure Limits and Health Hazards

Battery Plant Waste

- Sodium Chloride
 - Stable salt that dissolves in water.
 - No special clean up standards.
- Sodium Nitrate
 - Strong oxidizer
 - Minor health hazards

Disposed of by EcoMat system.

Plant Waste Disposal

EcoMat Inc.

- Based in San Francisco Bay Area
- Environmentally friendly
- Recycles nitrates to nitrogen gas and CO₂

EcoMat Inc.

- Environmentally friendly
- Economical
- Very light maintenance
- Lower chance of Non point source pollution

Battery Disposal Waste

- Potassium Hydroxide KOH
 - Same precautions
- Zinc
 - One of the most common elements in the earth's crust.
 - Most does not dissolve in water.
 - Minor health hazards

Battery Disposal Waste

Iron Oxide Fe_2O_3

Minor health hazards

Environmental Effects

- Can make drinking water taste bad, and can stain plumbing fixtures and laundry.
- U.S. Environmental Protection Agency (EPA) has established secondary drinking-water standards.

Battery Disposal Waste

Stainless Steel & Brass

– No threat to soil or ground water.

- Life Cycle well over 100 years.

Life Cycle Analysis

Cathode Raw Materials

NaOH NaClO $Fe(NO_3)_3 9H_2O$ $KMnO_{4}$ $CF_{\mathbf{v}}$ KOH

 $\overline{Fe(NO_3)} \cdot 9H_2O +$ NaClO + 5NaOH $\rightarrow Na_2FeO_4 +$ $NaCl + H_2O$

Anode Raw Materials ZnO ■ CaO $\blacksquare Bi_2O_3$ Et-hydroxy cellulose **PTFE** ■KOH

Additional Raw Materials

304 stainless steel header equipped with a glass-to-metal sealed electric terminal

Brass Current Collector

NFWA Membrane Battery Separator

Battery Production

Battery Production

■Water Usage: 10.8 mL/battery

Energy: 0.105 kWhr/battery

Transportation

All raw materials and product batteries are transported using:

LTL Trucking and Cargo Company

Battery Usage

- Standard sized AAA batteries are purchased by consumer.
- The iron (VI) super-batteries are used in electronic devices, where the following reaction occurs during cell discharge:

 $Na_{2}Fe(VI)O_{4} + Zn \rightarrow$ $Fe(III)_{2}O_{3} + ZnO + Na_{2}ZnO_{2}$

The consumer discards the battery in the trash.

Eventually, the discarded superbatteries will be placed into landfills.

Economic Analysis

Economic Analysis Outline

Economic Background Chemists vs. Engineers Equipment, FCI, TCI Profitability Effect of Capacity on Economics ■ FCI vs. Capacity Risk Analysis

Economic Background

Economic life of 10 years
Operating rate of 40 hrs / week
Inflation rate of 4%

Chemists vs. Engineers

■ FCI: \$978,000 ■ FCI: \$411,000 TCI \$472,000 **TCI \$1,125,000** ■ Weekly Cost: ■ Weekly Cost: \$4,889,000 \$43,200 ■ NPW \$2,750,000 ■ NPW \$-147,000,000 ■ ROI: -227% ■ ROI: 79%

Purchased equipment, FCI, TCI

Capacity ~ 50,000 batteries / week

■ Total Purchased Equipment ~ \$82,000

■ Fixed Capital Investment (FCI) ~ \$411,000

■ Total Capital Investment (TCI) ~ \$472,000

Equipment Cost

Cathode Equipment	Volume (gal)	Cost (\$)
Deionizer		\$2,526
Tank-1 Carbon Steel (Distilled H ₂ O)	5.28	\$20
Tank-2 Carbon Steel (NaClO)	16.09	\$25
Tank-3 Carbon Steel (Fe(NO ₃) ₃ 9H ₂ 0)	36.60	\$30
Tank-4 Carbon Steel (NaOH pellets)	16.58	\$25
Tank-5 Carbon Steel (Na ₂ FeO ₄)	11.64	\$20
Tank-6 Carbon Steel (KMnO ₄)	0.90	\$20
Tank-7 Carbon Steel (CFx)	5.58	\$20
Tank-8 Carbon Steel (KOH pellets)	17.95	\$25
Tank-9 Carbon Steel (Waste Storage)	74.21	\$1,426
Reactor-1	69.27	\$5,048
Filter-1 Cast iron	69.27	\$87
Mixer-1 Steel bhp=2.7 (NaOH)	2.22	\$2,259
Mixer-2 Steel bhp=2.7 (KOH)	2.40	\$2,259
Mixer-3 Steel bhp=2.7 (Cathode)	4.82	\$2,259
Vacuum Dryer-1		\$12,000
Equipment Cost

Anode Equipment	Volume (gal)	Cost (\$)
Mixer-4 stainless steel – 6 hp	24.95	\$3,312
Stirrer-1 stainless steel – 2 hp	10.82	\$2,259
Tank-10 Carbon Steel (ZnO)	3.59	\$20
Tank-11 Carbon Steel (CaO)	2.15	\$20
Tank-12 Carbon Steel (Et-hydroxy)	3.74	\$20
Tank-13 Carbon Steel (Bi ₂ O ₃)	0.23	\$20
Tank-14 Carbon Steel (PTFE)	1.12	\$20
Tank-15 Carbon Steel	10.83	\$20
Vacuum Dryer-4 carbon steel		\$12,000

Profitability

■ Total Weekly Cost ~ \$43,200 ■ Total Weekly Sales ~ \$50,000 ■ Yearly Cash Flow ~ \$373,000 ■ Net Present Worth (NPW) ~ \$2,750,000 Return of Investment (ROI) ~ 79% ■ Pay Out Time ~ 1 yr and 3 months

Economic Analysis

Cash flow vs. years

ROI vs. Cost

ROI vs. Cost

Capacity Effects

FCI vs. Capacity

Risk Analysis

Risk Analysis

Based on NPW
Sensitivity Strauss Plots
Product cost, product sales, FCI
NPW Histogram

Sensitivity

Strauss Plot

Net Present Worth Vs Product Cost Standard Deviation

Strauss Plot Net Present Worth vs. Sales Standard Deviation

Strauss Plot Net Present Worth vs. Fixed Capital Investment Standard Deviation

NPW Histogram

NPW Histogram

Conclusions

Conclusions

Lots of potential!
Batteries last longer and are more environmentally friendly
Process is profitable

Challenges & Improvements

- Chemists vs. Engineers
- Make process profitable
- Very little information about Iron (VI) compounds

Use mathematical model to optimize capacity, plant location, and market
 Research more on

Iron (VI) compounds to optimize process Any Questions???