Solar Reduction of CO₂

Group 9

Ore-ofe Adesina Kemi Harris John Long Amy Robertson Shane Steagall

Project Goals

Develop a process that uses solar energy to reduce

CO_2 to CO and O_2

Produce Viable Products

Determine Applicability for Mars Exploration

Introduction

CO₂ Emissions

- ✤ Global Warming
 - Changes global climate
 - Melting of polar ice caps
 - Acidification of the oceans

Background Solar Reduction

- Uses solar energy to convert CO_2 to CO and O_2
- Reduces the amount of CO₂ entering the atmosphere
- Marketable Products
 - ♦ CO
 - \bullet O₂
 - ♦ Energy

Process Overview

Process Location

San Juan Power Plant Farmington, NM ~14.5 MM-ton/yr

Purification System

Typical flue gas from coal fired boilers (dry basis):

- ♦ 81% Nitrogen
- ✤ 5% Oxygen

 \bullet Trace impurities SO_x (300-5000 ppmv), NO_x, Fly ash

 \bullet Pure CO₂ feed stream is needed for reaction process

Purification System

Produces 120 tons CO₂/day

- Fly Ash Removal
- → Removal of $NO_x \& SO_x$
- Purification of CO_2

Purification System NO_x Removal

SCR DENOX^(Haklor Topsoe) Process

• Catalytic reduction of NOx with NH_3

 $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$

 $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$

Purification System

CO₂ Purification Methods

Membranes

Adsorption with Molecular Sieves

- Cryogenic Processing
- Ca(OH)₂/Mg(OH)₂ Scrubbing
- Amine Scrubbing

Purification System

- Membranes
 - Require Additional Compression (Capital Cost)
 - Do Not Produce High Purity Products
- Adsorption
 - Use Molecular Sieves to Trap Gas
 - Regenerate Product
 - High Energy Requirements
 - Low Product Purity

Purification System

- Cryogenic Processing
 - CO_2 separated by distillation
 - High energy requirements
 - Liquid CO₂ product
- Ca(OH)₂/Mg(OH)₂ Scrubbing
 - Compounds <u>React</u> Reversibly With CO₂
 - Both Compounds React Similarly With SO₂
 - Unproven on an Industrial Scale

Amine Separation Process

Purification System

- AMINE SCRUBBING- (Absorption/ Stripping)
 - Absorber
 - ◆ $CH_3CH_2OHNH_2 + CO_2 \leftrightarrow CH_3CH_2OHNHCOO^- + H^+$ (MEA)
 (Carbamate)
 - Econamine FG solvent
 - ✤ 30 wt. % MEA solution
 - 85-95% CO_2 recovery

Purification System

- \bullet CO₂ regenerated
- → $CH_3CH_2OHNHCOO^- + H_2O \leftrightarrow CH_3CH_2OHNH_2 + HCO_3$
- Product purity 99.95%

Purification System

Provided by The Wittemann Company

 \rightarrow Produces 120 tons CO₂ /day

Capital Cost: \$3.3 million

Prototype Reactor

- Renewable Energy Corporation
- SOLAREC
 - Mirrors, Core, and Support
 - → 10 L/min flow of CO_2
 - 6% Conversion

Reactor Scale Up

Optimize Reactors

- Minimize Capital
- Intensive Properties
 - Temperature
 - Pressure

Reactors

- Heliostat Array
- Solar Furnace

Scale Up Assumptions

Suns Rays are Parallel

Mirror is Spherical

spherical aberration

Process Design Scale Up Assumptions

Scale Up Proportions

- $A = \pi \cdot \mathbf{R} \cdot \mathbf{h}$
- ♦ A ∝ Radiant Energy
- ♦ RadiantEnergy FlowRate
- Flowrate \propto Core Volume
- Pressure \propto Core Volume

Reactor Cost

- ♦ 90% ~ Reflective Surface
- ✤ 10% ~ Unit and Structure
- Optimum Conditions
 - Maximum Size
 - Minimum Units

Reactor Cost

Optimum Conditions

- ✤ 121 m² Surface Area
- ✤ 28 Reactor Units

♦ \$3.64M for System

Thermal Energy

✤ Process stream leaves reactor at ~1350 °F

✤ COSORB requires stream at 85 °F

Use energy to produce steam

Heat Transfer Equations

♦ Q = εσ A (T_i⁴ - T_{wall}⁴) Radiation ♦ Q = A * K * $\frac{\partial T}{\partial x}$ Conduction

→ $Q = A^*h^*\partial T$ Convection

Boiler furnace

Heat Transfer Equipment

→ Fire-Tube Boiler

Characteristics of radiation

Packaged Fire-Tube Boiler

- Heat transfer
 - →Estimated 0.42 MW of thermal energy
 - →Produces ~36,000 lb/hr of steam

Process Design Boiler Furnace Cost

Boiler \$145,000

Cooling tower \$2,000

Pump \$6,000

Product Recovery

- COSORB separation
- Iron reduction thermodynamically unfavorable

 $Fe_2O_{3(s)} + 3CO_{(g)} \leftrightarrow 2Fe_{(l)} + 3CO_{2(g)}$

COSORB - Selective absorption/desorption using CuAlCl₄ in organic solvent

Monochlorobiphenyl

COSORB advantage

Low corrosion rate

Ability to separate CO in the presence of CO2

Low energy consumption

 Ability to produce high purity product (99.9%)

CO₂ Recovery Options

Separation system for CO₂ and O₂

- High capital cost
- Insignificant revenue generation
- Purge and recycle
 - Purge stream to sell for Enhanced Oil Recovery
 - Recycle stream to quench the reaction

Process Design Industrial Uses of CO₂

Contraction of the

Process Design Storage Compressed Liquid CO, Wittemann MEA Freebee Compressed CO Gas ✤ THT Cryogenics

Safety FOLLOW SAFETY PROCEDURES

CO
TOXIC
Deadly at ~800ppm
Flammable
CO₂
Pressurized CO₂ with trace O₂

Environmental Impact CO₂ Reduction

San Juan Produces 14500000 tons/yr

- ~120 ton/ day processed
 - 5256 tons/yr reduction
 - ✤ 38544 tons/yr sold
- ♦ 0.015% Chemically Reduced
- ♦ 0.3% CO₂ Emissions Reduction

Lifetime = 10yrs

Capital Investment Equipment Costs: \$15.7m ✦Cosorb Unit - \$11.7m ✦Boiler - \$175,000 ✦MEA system – \$3.3m ✦Solar Reactor - \$3.6m ✦ Land: royalties - \$403,000 **→**TCI: \$49m

Product Costs

Operating Costs

Operating Costs	MMBtu/hr	\$/yr	
MEA cooling water	8.02	\$35,150.86	
MEA hot utility	4.58	\$80,291.98	
Water from tower	1.60	\$7,019.46	
COSORB cooling water	1.13	\$4,952.68	
COSORB hot utility	0.21	\$3,681.64	
Total power (MW)	0.5	\$289,271.40	
Cost of water (\$/MMBtu)	1800 0.5	∕∕ \$420,368.01	Total
Cost of hotutility (\$/MMBtu/hr)	2		
Cost of power (\$/kWhr)	0.066		

Product Cost

✦ Labor, avg. 8hrs/day e.g.

✦Operators, maintenance workers

✦Labor cost - \$1.6m/yr

Wages obtained from Bureau of Labor Statistics

Taxes – New Mexico

◆\$56,000 + 7.6% of excess over \$1m

✦Taxes - \$2.6m/yr

Sales ✦ Commodities **→**CO - \$0.86/ft³ → 39mft³/yr - \$33.5m\$/yr
 ♦CO2 - \$35/ton →~17250ton/yr - ~\$604,000/yr Total Profit - \$34.2m/yr

Net Earnings, P

✦ Function of Sales, Product Cost, Depreciation.

Cash flow - \$18.6m/yr

♦ NPW - ~\$78.5m

✤ ROI >46%

✤No risk

✤ POT – 1.65yrs

Risk Analysis Monte Carlo Method ✦Identify variables **→**FCI Product Cost →Product Price
 ◆Conversion – 9.6%, 12% (base case), 14.4% → Based on 12 % ± 20 %

Risk Analysis

Three Conversion scenarios

◆9.6%, 12%, 14.4%

Generate random numbers for all variables

✦Using mean and standard deviation

Risk Analysis

- Net Present Worth affected by variables
 - Calculated by varying FCI, PC, PP
 - Figure: NPW over 10 yrs at each conversion

Net Present Value (\$/10 ⁶)				
9.6 %	12%	14.4 %		
45.42	47.27	48.84		
48.24	49.61	51.92		
50.73	53.08	55.27		
50.85	52.68	54.40		
49.49	51.85	53.44		
44.00	45.96	47.51		
48.73	50.80	52.28		
48.19	49.64	51.19		
49.05	50.85	52.84		
45.04	46.26	47.93		
46.85	49.37	51.00		
49.75	51.16	53.32		
45.54	47.57	49.94		
45.72	47.64	49.44		
45.00	46.71	48.21		
48.12	50.64	52.33		
49.53	51.19	52.69		
43.22	44.54	45.73		
43.08	44.58	46.04		
43.27	44.92	46.55		
46.89	48.70	50.44		

Risk Analysis

Net Present Worth

Risk Analysis

Conclusions

Project goal Reduce CO2 in atmosphere 120tons/day removed by process

Conclusions

- Project is Profitable
- Further Research
 - Increasing Capacity of the System.
 - Conversion Rate

Conclusions

We are the greatest group
In the history of Advanced Design!

Process Design MARS – "The Next Real Frontier"

Mars Application

Pure Feed Source of CO₂

- Intensity of Solar Radiation on Mars
 - ♦ Atmosphere < 1 % of Earth's</p>
 - No global magnetic field
 - ✤ Intensity 2.5 times greater
- Recovery of products
 - Pure CO for rocket fuel
 - Pure O_2 for sustaining life
Process Design

Mars Application

Material Balance:

10 million years of processing CO2

Production of 77 mi³ of oxygen

Not practical to Change the Atmosphere of Mars

$Ca(OH)_2$ Reactions

Absorption: $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

Regeneration: $CaCO_3 \xrightarrow{\Delta H} CO_2 + CaO$

Calcination: $CaO + H_2O \rightarrow Ca(OH)_2$ (Highly exothermic)