Sequestering CO₂

Final Presentation Group 8

Lisa Cox Meghan Forester Jacob Hedden

Jennifer Scroggin Thomas Smith

Tuesday, April 29, 2003

Overview

 Introduction to Sequestration Separation Methods Transportation Network Sequestration Methods Mathematical Model Results and Recommendations

What is sequestration?

 Storage to reduce atmospheric levels of CO₂

- Four Methods of Sequestration
 - Geologic
 - -Ocean
 - Terrestrial
 - Mineral

Motivation

 Post-Industrial Revolution – CO₂ levels steady increase Global Warming/Greenhouse Effect - Greenhouse gases (i.e. CO_2) Kyoto Protocol – Possible ratification by U.S. - Requires 12% reduction in CO₂ emissions by 2010 Climate Stewardship Act of 2003

Power plant emissions

Fossil fuel combustion

- 97% of all CO₂ emissions
- Power plants are major sites of fossil fuel combustion

\diamond CO₂ emissions in U.S.

- 2nd highest in Greenhouse Gas emissions per capita in 1998
- Major cities are highest contributors
 Houston, Texas

Reducing CO₂ in Harris County

Large power plants

 Proximity of depleted hydrocarbon reservoirs, brine aquifers, and the ocean

Seven power plants in Harris County
 – emitted 5.3 million tons of CO₂ in 2000

Harris County Power Plants

Power Plant Schematic

 Burning of natural gas in air Heat generation to make steam Steam driven turbine for distribution of electrical power Reaction products emitted to atmosphere

Project Objectives

Governmental Perspective

- Recent legislation to decrease carbon dioxide emissions
- Determine reasonable emissions reduction requirements
 - Minimize electricity cost increase

Why Separate?

Flue gas composition
 ~ 4 wt% CO₂
 High flow rates
 ~ 0.5-57 million tons/year
 Sequestration pressure
 ~ 1000 psia

Methods of Separation

Absorption in a packed tower
Adsorption on solids
Refrigeration
Oxygen-enriched fuel firing
Membrane Separation

Reaction with Calcium Hydroxide

Absorption/Stripping

Monoethanolamine solvent - High solubility of $\overline{CO_2}$ in MEA Random packing (polyethylene rings) – Increased contact area between flue gas and solvent Separation with heat after absorption -85% CO₂, 15% H₂0

PFD

Economics

 Commercially available units – Wittemann Carbon Dioxide Equipment – Includes all components Capital Cost -250-15,000 kg/hr flue gas - \$0.5-\$50 million/unit Operating Cost - \$0.17/kg flue gas

Calcium Hydroxide

 Carbonation $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O \quad \Delta H_R = -179 \frac{kJ}{mol}$ Calcination $CaCO_3 \xrightarrow{580^{\circ}C} CaO + CO_2 \quad \Delta H_R = 4.19 \frac{kJ}{mol}$ Slaking $CaO + H_2O \rightarrow Ca(OH)_2 \quad \Delta H_R = -63.9 \frac{kJ}{mol}$

Assumptions

High rate of reaction under alkaline conditions (pH>10)

 Addition of NaOH

 Mass transfer limiting

 Diffusion of CO₂ in Ca(OH)₂ solution

Modeling the system

Flanking view Top view

Reactor Design

Gas Sparger

- Commercially available (Mott Corp)
- Even distribution of bubbles
- -2 mm diameter bubbles
- Cross-sectional area
 - Determined by throughput
 - Volumetric flow rate estimated by IGL
 Compressibility factor=0.9989
- Height
 - Determined by rate of mass transfer

P&ID

Economics

 Capital cost considerations – Heat Exchanger - Reactor – Calcium Hydroxide - Calciner - Gas Sparger Operating Cost – Hot/Cold Utilities

Capital Cost

Capital Cost (\$)= 331,000+0.454*Capacity (kg/hr)

Operating Cost

Energy Balance

 $Q \approx n\Delta H$

Final Operating Cost - \$0.0047/kg flue gas

Oxygen-Enriched Fuel Firing

- Alternative to separation
- Air Separation
- Combustion in pure oxygen
- Drawbacks
 - High capital
 - High operating costs
 - Retrofit to existing equipment

Transportation Network

- Required for delivery of CO₂ to collection point
 - -"Sam Bertron" power plant
- Compressed at site of separation
- Combined and liquefied at collection point
 - Compressed for sequestration (1300 psia)
 - Liquefied with cooling

Capital Cost

 \$9.02-\$9.35 million
 8,400-131,000 kg/hr

 Operating Cost

 \$.83/ton CO₂

Transportation Capital Cost

Flow rate (kg/hr)

Capital Cost (\$)= 9,000,000+2.67*Capacity (kg/hr)

Final Piping Network

Ocean Sequestration

Ocean capacity

- Largest capacity sequestration method
- Est. 1.4×10^{12} to 2×10^{16} metric tons

Injection

- -Various depths
- Liquid CO₂

Formation of clathrate hydrates Densities change with injection depth Effects long-term storage potential

Injection Depth	Clathrate Hydrate	Implications
Shallow (< 2700 m)	Low density	CO ₂ resurfacing
Deep (≥ 2700 m)	High density	Ocean floor pooling

Complications

 Rapid injection decreases pH - Considerable effect on ocean environment Legal restrictions – CO₂ considered an industrial waste Transportation costs - Economically prohibitive – LPG tankers ♦\$650 million - Rigid Pipeline ♦\$16 million/km

Transportation Costs

Fraction Sequestered	Power Requirements	Required # Tankers (1Tanker /325MW)	Minimum # Tankers	Cost (Million \$)
0.1	398.5	1.23	2	100
0.2	797	2.45	3	150
0.3	1195.5	3.68	4	200
0.4	1594	4.90	5	250
0.5	1992.5	6.13	7	350
0.6	2391	7.36	8	400
0.7	2789.5	8.58	9	450
0.8	3188	9.81	10	500
0.9	3586.5	11.04	12	600
1	3985	12.26	13	650

Conclusions

 Economics unfavorable
 Safety issues for ocean ecosystem
 Legal constraints on waste disposal in ocean

Other sequestration options exist

Geologic Sequestration Brine Aquifers

 Largest estimated geologic CO₂ sequestration capacity (est. 500 billion tons CO₂ globally)

 Most aquifers are easily accessible from CO₂ generation sources and many are already utilized for waste disposal

 Current studies are investigating "sealing" layer rock properties and the possibility of brine displacement which could contaminate potable water

Brine Aquifers – Process Overview

Considerations:

- Non-hydrocarbon producing injection interval
- Supercritical CO₂ desired for injection
 "Sealing" boundary layers

Source: Engineering & Economic Assessment of Carbon Dioxide Sequestration in Saline Formations

Brine Aquifers – Harris County

 Frio Formation is brine-bearing sandstone – shale sequence

28–35% porosity

- Anahuac Formation provides thick clay wedge seal
- Est. capacity of 230-390 Billion tons CO₂

Capital Investment for Brine Aquifers

Capital Cost (\$) = 70,000,000 + 27.75*Capacity (kg/hr)
Geologic Sequestration EOR

- 32 Million tons CO₂ utilized annually in US
- Injection technology well developed
- Current research projects monitoring injected CO₂ flow patterns to better assess true sequestration capability

 Profit potential from CO₂ sales could help offset separation and transportation costs

EOR – Process Overview

- CO₂ injected into depleted oil reservoirs
- Reservoir pressure increases
- Crude oil viscosity decreases

 As a result, recovery factors increase by ~10%

Source:

http://www.netl.doe.gov/publications/proceedings/ 01/carbon_seq/2a4.pdf

EOR Option for Harris County

Capacity Assessment

- 51 oil wells
- Average well conditions: 40 acres surface area 37 feet pay height 3,100 feet depth 115 °F & 1364 psi API gravity 29° Assumptions: 15% porosity 45% water saturation

Concentration of Oil Wells in Harris County

EOR Option for Harris County

 Estimated Oil in Place: 48 Million bbls originally 34 Million bbls currently remaining 29 Million bbls ultimately unrecoverable

 CO₂ solubility at reservoir conditions: 780 scf/bbl in crude oil 160 scf/bbl in water

Sequestration Capacity:
 1.7 Million tons CO₂ soluble in unrecoverable crude oil & formation water

EOR Specifications & Parameters

 Additional Fixed Capital Investment of \$300,000

Selling Price of CO₂
 \$35/ton

Planning Model

Linear Model

- General Algebraic Modeling System (GAMS) Interface
- Uses CPLEX to solve linear model
 - Material Balances
 - Cost Equations
 - Emissions Trading
 - Enhanced Oil Recovery

Flow Sheet for Model

Cost Equations

 Equipment Costs Operating Costs Transportation Costs Total Capital Investment \diamond Profit from selling CO₂ Profit from emissions trading Total Annualized Cost

Equipment Costs

 Each separation and sequestration method has a binary variable

- -1 if used
- -0 if not used

 Equipment costs are assumed to be linear with capacity

 $\begin{bmatrix} \text{Equipment} \\ \text{Cost} \end{bmatrix} = \begin{bmatrix} \text{Binary} \\ \text{Variable} \end{bmatrix} \times \begin{bmatrix} \text{Fixed} \\ \text{Cost} \end{bmatrix} + \begin{bmatrix} \text{Capacity} \end{bmatrix} \times \begin{bmatrix} \text{Variable Cost} \end{bmatrix}$

Operating Costs

\$/(kg/hr)

Transportation Costs

 Similar to operating cost
 Depends on the distance to transport

 [Transportation Cost
] =
 [CO₂ Flow Rate] ×
 [Site Distance] ×
 [Transportation Slope
]

 Transportation cost slope - \$/((Kg/hr) mile)

Profit from Selling CO₂

Sell for EOR

- Profit = Flow rate to EOR (Price of CO₂)
- Can only sell a certain amount for this purpose

 $W_{EOR',t} \leq 17,400 \text{ kg/hr}$

- 2 Categories of Emissions Trading (ET)
 - Internal : Among 7 power plants in Harris County
 - External : If Harris County plants exceed required emissions reductions, excess units of reduction can be sold for profit

- Incentive to capture and sequester more CO₂
- Helps to offset costs to electricity consumers
- Terminology
 - Emissions Reduction Credit (ERC)
 - 1 ERC is 1 ton of CO₂ sequestered beyond required reduction

 No official government CO₂ ET program

Pricing Estimates

- Wharton Econometric Forecasting Associates
- -\$54/ERC
- Will vary over time with same trend as electricity prices

Voluntary Programs - Chicago Climate Exchange Equation for model - ET within network in Harris county generates no profit - Externally, profit can be generated – Profit = Price per ERC (Number of ERCs)

Total Annualized Cost

- Translation to electricity price increase
 - Divide by the total capacity of all of the plants in the network
 - Result: \$/kWh needed for the sequestration to pay for itself

 Objective of mathematical model: minimize cost increase to electricity consumers

Model Results - Summary

- 15% Reduction over 10 years (1.5% per year)
- Calcium Hydroxide separation in all cases
- Depending % emissions reduction, different plants will separate and sequester CO₂
- Use Brine Aquifers to sequester

Model Results – Electricity Cost Scenarios

→ 0% Reduction → 15% Reduction → 35% Reduction → 50% Reduction

Model Results – Emissions Reductions (Total Annualized Cost)

Model Results – Electricity Price due to changing Ca(OH)₂ Cost

● -30% Error × -20% Error + -10% Error ◆ 10% Error × 20% Error ■ 30% Error

Model Results – Total Annualized Cost for changing Ca(OH)₂ Cost

Model Results – Electricity Price for Transportation Cost Variation

Model Results – Total Annualized Cost for Transportation Variation

Model Results – Aquifers Electricity Price Sensitivity

-30% Error × -20% Error + -10% Error ■ 10% Error × 20% Error ◆ 30% Error

Model Results – Aquifers Total Annualized Cost Sensitivity

Model Results – Price Sensitivity for ERC

Model Results – Price Sensitivity for ERC

Model Results

Price Sensitivity of CO₂

- In order to use EOR some capital investment is required
- Current price of CO₂ \$35/ton (\$0.039/kg)
- EOR is not a viable option in the 30% deviation range for the price of CO₂
- In order for EOR to be used, the price of CO₂ would have to be \$370/ton (\$0.41/kg)

This is extremely unlikely

Demonstrated by Stochastic Model

Risk Analysis

- Incorporate risk into mathematical model
- Variables with the greatest amount of risk
 - Price of Electricity
 - Forecasting by Energy Information Administration
 - Price of CO₂
 - Price of ERC
 - Price of CO₂ and ERC will vary with same trend as electricity cost

Forecasting of Electricity Prices

Year

Source: Energy Information Administration http://www.eia.doe.gov/oiaf/aeo/aeotab_1.htm

Forecasting of CO₂ Prices

Forecasting of ERC Prices

Conversion to Stochastic Model

- Obtain average values for each year for risky variables
- Obtain standard deviation for each year
- Add scenarios to the model
 - Assume normal distribution with 30 scenarios
 - Generate values for variables within model

Conversion to Stochastic Model

Change objective function

 Minimize expected cost increase of electricity

- Expected Value:

 $\mathbf{E}(\mathbf{x}) = \Pr\{\mathbf{x}\} \cdot \mathbf{x}$

 The stochastic model will tell us "Here and Now" decisions

 What should we install now to have the best result for all of the possible scenarios

Results of Stochastic Model – Price Histogram

Risk Curve

Recommendations

- Stochastic model doesn't warrant any major changes over deterministic model
 - 15% Reduction over 10 years
 - Calcium Hydroxide separation in all cases
 - Depending % emissions reduction, different plants will separate and sequester CO₂
 - Use Brine Aquifers to sequester

Recommendations

 Stochastic model recommends different capacities than deterministic model

Year	Plant where Ca(OH) ₂ System Installed	
	Deterministic Model	Stochastic Model
1	Sam Bertron	Sam Bertron and
		Deepwater
2	Webster	Greens Bayou, Hiram
		Clarke, and Webster
3	Increase Capacity of Sam	of Sam Hiram Greens Bayou
	Bertron and add Hiram	
	Clarke	
4	Increase Capacity of Sam	Increase Capacity of
	Bertron	Greens Bayou
5	TH Wharton	No additions necessary
6	No additions necessary	Increase Capacity of
		Greens Bayou
7	No additions necessary	No additions necessary
8	Greens Bayou	No additions necessary
9	Deepwater	Increase Capacity of Sam
		Bertron
10	No additions necessary	Increase Capacity of Sam
		Bertron