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Overview

¢ Introduction to Sequestration
¢ Separation Methods

¢ [ransportation Network

¢ Seguestration Methods

» Mathematical Model

¢ Results and Recommendations



What is sequestration?

¢ Storage to reduce atmospheric levels
of CO,

¢ Four Methods of Sequestration
— Geologic
— Ocean
— Terrestrial
— Mineral



Motivation

¢ Post-Industrial Revolution
— CO, levels steady increase

¢ Global Warming/Greenhouse Effect
— Greenhouse gases (i.e. CO,)

¢ Kyoto Protocol
— Possible ratification by U.S.

— Requires 12% reduction in CO,
emissions by 2010

¢ Climate Stewardship Act off 2003



Power plant emissions

¢ Fossil fuel combustion
- 97% of all CO, emissions

— Power plants are major sites of fossil
fuel combustion

¢ CO, emissions in U.S.

— 2nd highest in Greenhouse Gas
emissions per capita in 1998

— Major cities are highest contributors
¢ Houston, Texas



Reducing CO, in Harris County

¢ Large power plants

¢ Proximity of depleted hydrocarbon
reservoirs, brine aquifers, and the
ocean

» Seven power plants in Harris County.
— emitted 5.3 million tons of CO, in 2000



Harris County Power Plants




Power Plant Schematic

¢ Burning of natural
gas in air

¢ Heat generation to ‘
make steam

¢ Steam driven

turbine for ; —

distribution of T
electricall power

¢ Reaction products
emitted to
atmosphere




Project Objectives

¢ Governmental Perspective

— Recent legislation to decrease carbon
dioxide emissions

¢ Determine reasonable emissions
reduction requirements

— Minimize electricity cost increase



Why Separate?

¢ Flue gas composition
rJ 4 WtO/O COZ

¢ High flow rates
~ 0.5-57 million tons/year

¢ Sequestration pressure
~ 1000 psia



Methods of Separation

¢ Absorption in a packed tower

¢ Adsorption on solids

¢ Refrigeration

+ Oxygen-enriched fuel firing

» Membrane Separation

¢+ Reaction with Calcium Hydroxide



Absorption/Stripping

¢ Monoethanolamine solvent
— High solubility of CO, in MEA

¢ Random packing (polyethylene rings)

— Increased contact area between flue gas
and solvent

¢ Separation with heat after absorption
_850/0 COz, 150/0 H20
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Economics

¢ Commercially available units
— Wittemann Carbon Dioxide Equipment
— Includes all components

¢ Capital Cost
— 250-15,000 kg/hr flue gas
— $0.5-$50 million/unit

¢ Operating Cost
— $0.17/kg flue gas



Calcium Hydroxide

¢ Carbonation
CO, +Ca(OH), — CaCO,+ H,0 AH, =-179K)/

¢ Calcination
CaCO,— 5 Ca0+CO, AH,=419K)/

¢ Slaking
CaO+ H,0 — Ca(OH), AH, =—63.9 %0 1




Assumptions

¢ High rate of reaction under alkaline
conditions (pH>10)

— Addition of NaOH
¢ Mass transfer limiting
— Diffusion of CO, in Ca(OH), solution



Modeling the system

¢ Flanking view ¢ Top view




Reactor Design

¢ Gas Sparger
— Commercially available (Mott Corp)
— Even distribution of bubbles
— 2 mm diameter bubbles

¢ Cross-sectional area

— Determined by throughput

— \Volumetric flow rate estimated by IGL
o Compressibility factor=0.9989

¢ Heilght
— Determined by rate of mass transfer
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Economics

¢ Capital cost considerations
— Heat Exchanger
— Reactor
— Calcium Hydroxide
— Calciner
— Gas Sparger

¢ Operating Cost
— Hot/Cold Utilities
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Operating Cost

¢ Energy Balance
O~ nAH

¢ Final Operating Cost
- $0.0047/kg flue gas



Oxygen-Enriched Fuel Firing

¢ Alternative to separation
¢ Air Separation
¢ Combustion in pure oxygen

» Drawbacks

— High capital

— High operating costs

— Retrofit to existing equipment




Transportation Network

¢ Required for delivery of CO, to
collection point

—"Sam Bertron™ power plant
¢ Compressed at site of separation
¢ Combined and liguefied at collection
point
— Compressed for sequestration (1300
psia)
— Liguefied with cooling



Transportation Schematic
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¢ Capital Cost
— $9.02-$9.35 million
— 8,400-131,000 kg/hr

¢ Operating Cost
— $.83/ton CO,

{
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Final Piping Network




Ocean Sequestration

¢ Ocean capacity
— Largest capacity sequestration method
— Est. 1.4%x1012 to 2% 1016 metric tons

¢ Injection

— \V/arious depths



Overview

¢ Formation of clathrate hydrates
— Densities change with injection depth
— Effects long-term storage potential

Clathrate
Injection Depth Hydrate Implications

Shallow (< 2700 m) | Low density | CO, resurfacing

Ocean floor

Deep (2 2700 m) | High density booling




Complications

¢ Rapid injection decreases pH

— Considerable effect on ocean
environment

¢ Legal restrictions
— CO, considered an industrial waste

¢ ransportation costs

— Economically prohibitive

— LPG tankers
¢ $650 million

— Rigid Pipeline
¢ $16 million/km



Transportation Costs

Fraction Power RCL UL Minimum # C.O.St
Sequestered Requirements flankors Tankers Ly
(1Tanker /325MW) $)

0.1 398.5 1.23 2 100
0.2 797 2.45 3 150
0.3 1195.5 3.68 4 200
0.4 1594 4.90 5 250
0.5 1992.5 6.13 7 350
0.6 2391 7.36 8 400
0.7 2789.5 8.58 9 450
0.8 3188 9.81 10 500
0.9 3586.5 11.04 12 600

1 3985 12.26 13 650




Conclusions

¢ Economics unfavorable
¢ Safety issues for ocean ecosystem

¢ Legal constraints on waste disposal
In ocean

¢ Other sequestration options exist



Geologic Sequestration
Brine Aquifers

¢ Largest estimated geologic CO,
sequestration capacity (est. 500 billion
tons CO, globally)

¢ Most aquifers are easily accessible from
CO;5 generation sources and many are
already utilized for waste disposal

¢ Current studies are investigating “sealing”
layer rock properties and the possibility of
prine; displacement which; coula
contaminate potable water



Brine Aquifers — Process Overview
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Brine Aquifers — Harris County

¢ Frio Formation is

brine-bearing
sandstone - shale o EOR
Seq uence | Storage Tanks :

» 28—35% porosity W
¢ Anahuac Formation COmpressedcozsemﬁ;
- . re-existing injection wells
provides thick clay " e T2 mies
wedge seal
¢ Est. capacity of
230-390 Billion

tons CO5



Capital Investment for Brine Aquifers
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Geologic Sequestration
EOR

¢ 32 Million tons CO, utilized annually
in US

¢ Injection technology well developed

¢ Current research; projects monitoring
injected CO, flow patterns to better
assess true sequestration capability

¢ Profit potential from CO,, sales could
help offset separation and
transportation COSts



EOR — Process Overview

¢ CO, injected into

deplete(_:l ol Crude Oil CO,
reServoirs -

¢ Reservoir pressure | T_ .o |
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Increase by ~10%



EOR Option for Harris County

Capacity Assessment Concentration of Oil Wells in
: Harris County
¢ 51 oil wells

¢ Average well
conditions:

40 acres surface area
37 feet pay height
3,100 feet depth
115 °F & 1364 psi
API gravity 29°

¢ Assumptions:
15% porosity.
4590 water saturation




EOR Option for Harris County

¢ Estimated Oil in Place:
48 Million bbls originally
34 Million bbls currently remaining
29 Million bbls ultimately unrecoverable

¢ CO; solubility at reservoir conditions:
/80 scf/bbl in crude oil
160 scf/bbl in water

¢ Seguestration Capacity:

1.7 Million tons! CO5 seluble in unrecoverable
crude; oill & fermation water



EOR
Specifications & Parameters

¢ Additional Fixed

Capital Investment
0ips500;000 foroer

¢ Selling Price of CO; W S
$35/ton B




Planning Model

¢ Linear Model

¢ General Algebraic Modeling System
(GAMS) Interface

¢ Uses CPLEX to solve linear model
— Material Balances
— Cost Equations
— Emissions Trading
— Enhanced Oil Recovery.



Plants:
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Methods:
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Cost Equations

¢ Equipment Costs

¢ Operating Costs

¢ Iransportation Costs

¢ [otal Capital Investment

¢ Profit from selling CO,

¢ Profit from emissions trading
¢ lotall Annualized Cost



Equipment Costs

¢ Each separation and sequestration
method has a binary variable

— 1 if used
— 0 if not used

¢ Equipment costs are assumed to be
linear with capacity.

Equipment Binary Fixed : :
= . X + [Capacity|x [Variable Cost]
Cost Variable Cost



Operating Costs

¢ Includes
— Utility cost
— Raw materials

 Operating | | Flow | | Operating |
= X
Cost Rate Slope

¢ Units of operating cost slope are

$/(kg/hr)




Transportation Costs

¢ Similar to operating cost
¢ Depends on the distance to transport

Transportation CO, Site Transportation
= X X
Cost Flow Rate | | Distance Slope

¢ Iransportation cost slope
- $/((Kg/hr) mile)



Profit from Selling CO,

¢ Sell for EOR
¢ Profit = Flow rate to EOR (Price of
CO,)

¢ Can only sell a certain amount for
this purpose

Wieor, < 17,400 kg/hr



Emissions Trading

¢ 2 Categories of Emissions Trading
(ET)
— Internal : Among /7 power plants in
Harris County

— External : If Harris County plants
exceed required emissions reductions,
excess units of reduction can be sold for
profit



Emissions Trading

¢ Incentive to capture and sequester
more CO,

¢ Helps to offset costs to electricity
CONSUMErs

¢ llerminology.
— Emissions Reduction Credit (ERC)

— 1 ERC is 1 ton of CO, sequestered
peyond required reduction



Emissions Trading

¢ No official government CO; ET
Drogram

¢ Pricing Estimates
— Wharton Econometric Forecasting
Associates
— $54/ERC

— Will vary: ever time with same trend as
electricity prices




Emissions Trading

¢ VVoluntary Programs
— Chicago Climate Exchange

¢ Equation for model

— ET within network in Harris county.
generates no profit

— Externally, profit can be generated
— Profit = Price per ERC (Number of ERCs)



Total Annualized Cost

— Translation to electricity price increase

¢ Divide by the total capacity of all of the
plants in the network

o Result: $/kWh needed for the sequestration
to pay for itself
— Objective of mathematical model:
minimize cost increase to electricity
CONsSUuMmMers



Model Results - Summary

¢ 15% Reduction over 10 years (1.5%
pDer year)

¢ Calcium Hydroxide separation in all
Cases

¢ Depending % emissions reduction,
different plants will separate and
sequester CO;

¢ Use Brine Aquifers to sequester



Model Results — Electricity Cost
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Reductions (Total Annualized Cost)
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Model Results — Electricity Price
due to changing Ca(OH), Cost
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Model Results — Total Annualized
Cost for changing Ca(OH), Cost

160
140
120 -

100

Total Annualized Cost (Millions
$/yr)
S

year

—o—-30% Error —>—-20% Error —+-10% Error —4— Base Estimate
10% Error —*—20% Error -2 30% Error

12



Model Results — Electricity Price for
Transportation Cost Variation
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Model Results — Total Annualized
Cost for Transportation Variation
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Model Results — Aquifers
Electricity Price Sensitivity
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Price of Electricity ($/kWh)

Model Results — Price Sensitivity
for ERC
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Model Results — Price Sensitivity
for ERC

140
120 X

—
o
(@)

(Millions of $/yr)

N
o

Total Annualized Cost

o

Year

—--30% Error  —~-20% Error  —+-10% Error 10% Error
—%-20% Error -+ 30% Error —+— Base Estimate




Model Results

¢ Price Sensitivity of CO,

—In order to use EOR some capital
iInvestment is required

— Current price of CO, $35/ton
($0.039/kg)

— EOR is not a viable option in the 30%
deviation range for the price off CO,

— In order for EOR to be used, the price of
CO; would have to be $370/ton
($0.41/kg)

¢ [his is extremely unlikely
¢ Demonstrated by Stechastic Model



Risk Analysis

¢ Incorporate risk into mathematical
model

¢ Variables with the greatest amount
of risk

— Price of Electricity

¢ Forecasting by Energy Information
Administration

— Price off CO,
— Price of ERC

= Price off CO, and ERC will vary with
same trend as electricity cost




Forecasting of Electricity Prices
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Cost ($/ton)
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Conversion to Stochastic Model

¢ Obtain average values for each year
for risky variables

¢ Obtain standard deviation for each
year

¢ Add scenarios to the model

— Assume normal distribution with 30
scenarios

— Generate values for variables within
model



Conversion to Stochastic Model

¢ Change objective function

— Minimize expected cost increase of
electricity

— Expected Value:
E(x)= Pr{x}- X
¢ Ihe stochastic model will tell us
“Here and Now™ decisions

—What should we install how to have the
pest result for all of the possible
scenarios



Results of Stochastic Model
— Price Histogram
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Recommendations

¢ Stochastic model doesn’t warrant
any major changes over
deterministic model
— 15% Reduction over 10 years

— Calcium Hydroxide separation in all
cases

— Depending % emissions reduction,
different plants willl separate and
seguester CO,

— Use Brine Aquifers to sequester



Recommendations

Stochastic model recommends different
capacities than deterministic model

Year Plant where Ca(OH), System Installed
Deterministic Model Stochastic Model
1 Sam Bertron Sam Bertron and
Deepwater
Greens Bayou, Hiram
2 Webst ;
EPSEEr Clarke, and Webster
Increase Capacity of Sam :
K Bertron and add Hiram Increase Capacity of
Greens Bayou
Clarke
4 Increase Capacity of Sam Increase Capacity of
Bertron Greens Bayou
5 TH Wharton No additions necessary
6 No additions necessary MRS el
Greens Bayou
7 No additions necessary No additions necessary
8 Greens Bayou No additions necessary
9 S Increase Capacity of Sam
Bertron
10 No additions necessary efee e CEpEely eiggin
Bertron




