Water to Breathe?

A new technology may make it possible...

Oxygen From Water

Group 7

Anh Nguyen Dustin Duke Jorge Arias Juste Tchandja Justin Brown Keith Orendorff

May 2, 2003

New Technology

A recently discovered technology uses the compound
 [H₂O(terpy)Mn(O)₂Mn(terpy)OH₂](NO₃)₃
 (oxygen evolving complex OEC)
 to catalyze the evolution of oxygen from water.

Project Objective

• To develop and design a profitable process that uses the OEC to produce oxygen from water.

Proposal

• We propose a process that will use the OEC with a series of multifunction reactors, a hydrogen oxygen separator and solar power to provide life-supporting oxygen on manned space exploration missions.

• As a basis for comparison we examine oxygen production to support a five man crew.

Space Exploration

- Currently, water electrolysis provides oxygen for the International Space Station and Mir.
- Also electrolysis is proposed for Mars exploration.
- Our task is to see if we can offer advantages over electrolysis.

Presentation Outline

- How the Chemistry Works
- Process Design / Technical Details
- Mars Logistics
- Economic Justification
- Conclusion

Chemistry

- Process utilizes 2 sets of reactions.
 - Oxygen Production/Catalyst Regeneration
 - Sulfuric Acid Regeneration/O₂ Recovery
- 2 reactors involved
 - 1 CSTR and 1 PFTR
 - After several revisions to original design

Main Catalyst

- $C_{30}H_{22}Mn_2N_6O_2$
- In the process, the hydrated from is used.
- $C_{30}H_{26}Mn_2N_6O_4$
- This has an additional water molecule attached to the Mn atom.

Overview of Chemistry

- Oxygen Production/Catalyst Regeneration $17H_2O + H_2SO_4 \rightarrow 17H_2 + 8O_2 + H_2SO_5$
- Sulfuric Acid Regeneration/O₂ Recovery $H_2SO_5 \rightarrow H_2SO_4 + \frac{1}{2}O_2$
- Overall
 - $-17H_2O \rightarrow 17H_2 + 8.5O_2$
 - Daily: $2400H_2O \rightarrow 2400H_2 + 1\overline{200O_2}$

Chemistry: In the Beginning

- Original Design was based on a direct scale up from the chemistry
 - Everything added to a beaker was poured into a batch reactor
 - Very Complicated Design

Problems: In the Beginning

- H₂SO₄ regenerated NO/NO₂ reaction
 Air contamination
- Many reactors
 Complicated PFD

The Beginning... ugly

The Middle Ages

- We get wiser, eliminate NO/NO₂
 - Equipment Eliminated
 - 1 Reactor
 - 1 Separator
 - 2 Pumps
 - Healthier solution regenerates with MnO₂ catalyst
 - No new chemicals added

Still in the Dark

- Problem: Perpetual Acid Dilution
- Still complicated PFD

Not so Bright PFD

Chemistry Conquered: Bright Ideas

- Realize catalyst regeneration and O₂ production can occur simultaneously

 Allows for continuous process
- Possible because
 - Catalyst not affected by pH
 - O₂ production is the Rate Limiting Step

PFD a Chemical Engineer can be Proud Of

Individual Reactions

Oxygen Production/Catalyst Regeneration

 $\begin{aligned} & 2C_{30}H_{26}Mn_{2}N_{6}O_{4} + 16H_{2}O \rightarrow 4C_{15}H_{11}N_{3} + 2MnO_{4}- + 2Mn^{3+} + 8O_{2} + 40H^{+} + 44e^{-} \\ & 2MnO_{4}- + 16H^{+} + 10e^{-} \rightarrow 2Mn^{2+} + 8H_{2}O \\ & 7H_{2}SO_{4} + 7H_{2}O \rightarrow 7H_{2}SO_{5} + 14H^{+} + 14e^{-} \\ & 34H^{+} + 34e^{-} \rightarrow 17H_{2} \\ & 2Mn^{2+} + 2Mn^{3+} + 4C_{15}H_{11}N_{3} + 6H_{2}SO_{5} + 2H_{2}O + 4H^{+} + 14e^{-} \rightarrow 2C_{30}H_{26}Mn_{2}N_{6}O_{4} + 6H_{2}SO_{4} \end{aligned}$

 $17H_2O + H_2SO_4 \rightarrow 17H_2 + 8O_2 + H_2SO_5$

• Sulfuric Acid Regeneration/O₂ Recovery

 $H_2SO_5 + H_2O \rightarrow H_2SO_4 + H_2O_2$ (in the presence of MnO₂ catalyst) $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$ (in the presence of MnO₂ catalyst)

 $H_2SO_5 \rightarrow H_2SO_4 + \frac{1}{2}O_2$

Theoretical Thermodynamics

- Reaction requires 285.8 kJ/mole H_2O
- Need 2400 moles H_2O per day
 - 685.920 MJ per day
 - 7.94 kW per day
 - Actual numbers are higher due to pumping, heat loss, etc...

Continuous System

- Advantages:
 - Simple operations
 - Smaller space occupied
 - Less catalyst required
 - Low equipment cost
 - Heat integration
 - Low operating cost
 - Keep the O₂ concentration constant

Continuous Design PFD

2425 H2 1230 H<u>2O</u>

- Require two reactors
- Total reactor volume 30 L
- Reactor costs \$15,500 (Including heat exchanger)

- CSTR:
 - Produce O_2
 - Regenerate catalyst
 - Condition:
 - Pressure: 9 atm
 - Temperature: 25°C

• CSTR:

- Volume: 20L
- Energy required: 8.4kW
- Catalyst used: 10.1 moles
- Feed water flow rate: 2.8L/hr
- Sulfuric acid 0.57M, flow rate: 111L/hr

• PFTR

- Regenerate sulfuric acid
- Enthalpy change: -0.27kW
- Catalyst: MnO₂
- Condition:
 - Pressure: 9 atm
 - Temperature: between 50 and 100°C

- PFTR:
 - Volume: 10L
 - -ID = 15cm
 - Length 56cm
 - Feed flow rate: 111L/hr
 - Catalyst lined reactor tubes

Hydrogen Oxygen Separation

Definition of the problem Design a particular process that can meet the requirements.

> Feed flowrate = $1200 \text{ mol } O_2/day$ Purity = 100%

Less is more

Separation Process	Favorable Flowrates	Equipment	Product
Cryogenically distillation	High	Compressor Heat exchanger Expander Distillation Column Condenser	Permeate H ₂ H ₂ H ₂ H ₂ C H ₂ C H ₂ C H ₂ C C Retentate
PSA (Pressure Swing Adsorption)	Medium	Two adsorbers Compressor	0_2 H ₂ Feed
Membrane	Low	Compressor Membrane	

Membrane

Goal: Maximum recovery of Oxygen

Topological Optimization

Several different flowsheets were considered

Optimization includes: Feed/permeate pressure ratio, Number of membrane units and recovery of hydrogen.

Excel Based Program

Spreadsheet

Data (Fe	ed)			3	÷	9.	÷	8.	5.
Flowrate O2 (gmol/h)	76.9230769	Temperature C	25	1846.15385					
Flowrate H2 (gmol/h)	153.846154	Pressure atm	1	3692.30769					
I.	230.769231				Hydrogen	Oxygen			Actual Oxygen
Variables for YOU to SPECIFY:		Length	f1	f2	r1	г2	r Hydrogen	r Oxygen	R2 Oxygen
Desired mol% Hydrogen in Oxygen stream (yr)	0.02	0			0	0	1	1	1
Feed/Permeate Ratio (PR)	9	0.01	1.66989472	0.14601727	0.01669895	0.00146017	0.98330105	0.99853983	0.99853983
Selectivity (S)	12	0.02	1.66095555	0.14750713	0.0333085	0.00293524	0.9666915	0.99706476	0.99706476
mol% of Hydrogen in Feed (yf)	0.66666667	0.03	1.65186871	0.1490216	0.04982719	0.00442546	0.95017281	0.99557454	0.99557454
Desire Feed Flow Rate (SCFH)	199.282335	0.04	1.64263155	0.15056113	0.06625351	0.00593107	0.93374649	0.99406893	0.99406893
Number of Mebranes you want to use	1	0.05	1.63324141	0.15212615	0.08258592	0.00745233	0.91741408	0.99254767	0.99254767
		0.06	1.62369557	0.15371712	0.09882288	0.0089895	0.90117712	0.9910105	0.9910105
Variables for YOU to GUESS:		0.07	1.61399135	0.15533449	0.11496279	0.01054285	0.88503721	0.98945715	0.98945715
Area Factor (Q) (maybe 0.31)	0.21216653	0.08	1.60412603	0.15697871	0.13100405	0.01211264	0.86899595	0.98788736	0.98788736
Recovery of Hydrogen (r1) (maybe 0.98)	0.99338327	0.09	1.59409686	0.15865024	0.14694502	0.01369914	0.85305498	0.98630086	0.98630086
Recovery of Oxygen (r2)	0.65212089	0.1	1.58390113	0.16034953	0.16278403	0.01530263	0.83721597	0.98469737	0.98469737
		0.11	1.57353611	0.16207703	0.17851939	0.0169234	0.82148061	0.9830766	0.9830766
RESULTS:		0.12	1.56299907	0.16383321	0.19414938	0.01856174	0.80585062	0.98143826	0.98143826
mol% of Hydrogen in permeate (yp)**	0.75288037	0.13	1.5522873	0.1656185	0.20967225	0.02021792	0.79032775	0.97978208	0.97978208
F1	-7.9707E-09	0.14	1.54139811	0.16743337	0.22508623	0.02189225	0.77491377	0.97810775	0.97810775
F2	-1.3273E-09	0.15	1.53032882	0.16927825	0.24038952	0.02358504	0.75961048	0.97641496	0.97641496
F3	1.7581E-08	0.16	1.51907679	0.17115359	0.25558029	0.02529657	0.74441971	0.97470343	0.97470343
Final Area Factor (Q)	0.2122	0.17	1.50763941	0.17305982	0.27065669	0.02702717	0.72934331	0.97297283	0.97297283
Recovery of Hydrogen (r1)	0.9934	0.18	1.49601414	0.17499736	0.28561683	0.02877714	0.71438317	0.97122286	0.97122286
Recovery of Oxygen (r2)	0.6521	0.19	1.48419845	0.17696664	0.30045881	0.03054681	0.69954119	0.96945319	0.96945319
Area of the All of the Membranes (ft^2)	181.0972	0.2	1.47218991	0.17896807	0.31518071	0.03233649	0.68481929	0.96766351	0.96766351
Area of Each Membrane (ft^2)	181.0972	0.21	1.45998614	0.18100203	0.32978057	0.03414651	0.67021943	0.96585349	0.96585349
2. Al Al		0.22	1.44758487	0.18306891	0.34425642	0.0359772	0.65574358	0.9640228	0.9640228
		0.23	1.43498389	0.18516907	0.35860626	0.03782889	0.64139374	0.96217111	0.96217111
square meters	16.82	0.24	1.42218112	0.18730287	0.37282807	0.03970192	0.62717193	0.96029808	0.96029808
O2 purity	0.97999998	0.25	1.40917459	0.18947062	0.38691982	0.04159663	0.61308018	0.95840337	0.95840337
recovery	0.64550415	0.26	1.39596247	0.19167264	0.40087944	0.04351335	0.59912056	0.95648665	0.95648665
US\$ Cost	\$16,820.00	0.27	1.38254307	0.19390921	0.41470487	0.04545245	0.58529513	0.95454755	0.95454755
Permeate	179.59	0.28	1.36891485	0.19618058	0.42839402	0.04741425	0.57160598	0.95258575	0.95258575
Retentate	51.18	0.29	1.35507648	0.19848697	0.44194478	0.04939912	0.55805522	0.95060088	0.95060088
		0.3	1.34102679	0.20082859	0.45535505	0.05140741	0.54464495	0.94859259	0.94859259

Optimization Equations

Engineering Ideas

Optimized Flowsheets

	Without Reactor	Featuring a Reactor
Oxygen Concentration	98%	100%
Recovery of Oxygen	62%	64%
Membrane Units	2	1

Results

Optimized Membrane

- Recovery of Oxygen: 65 %
- Pressure Ratio: 9
- PRISM[®] hollow fiber membrane
- Membrane Area: 17 m²
- Estimated cost: \$17,000

- Complete purification of Oxygen
- Catalyst: a fixed-bed 0.5% Platinum
- Volume: 0.5 L
- Estimated cost: \$700

- Complete purification of Hydrogen
- Catalyst: a fixed-bed 0.5% Platinum
- Volume: 2.7 L
- Estimated cost based on Pt cost: \$3800

Cost Breakdown

Table 1: Price Breakdown 1200 mole per Day Ex.					
Unit	Quantity	Price / Unit	Total Cost		
Reactor 1	1	\$10,100	\$10,100		
Reactor 2	1	\$3,800	\$3,800		
Heat exchanger	1	\$500	\$500		
Reactor 3	1	\$700	\$700		
Reactor 4	1	\$3,700	\$3,700		
H ₂ -O ₂ Separator	1	\$17,000	\$17,000		
Water Pump	1	\$3,600	\$3,600		
Liquid Pumps	3	\$160	\$480		
Catalyst	10.1 mol	\$25,200 / mol	\$254,500		
Total Unit Cost	**	**	\$294,220		

Water in Mars

- Where can we find water in Mars?
 North pole: 75% of top 3 ft of soil is ice
 Subsurface as liquid
- How much water is on Mars?
 0.03% of mars weight

What to do with H₂ produced?

- Vent H₂ gas to the Martian atmosphere
- Future Options:

- Produce more water from CO_2 $4H_2 + CO_2 \leftrightarrow 2H_2O + CH_4$

Methane can be liquefied and used for space vehicle propulsion

Power Supply

- Total system energy requirements 9.2 kW
- Mars may receive 44% less solar radiation than Earth
- Solar panel area needed: 1880 ft²
- 139 panels cost \$83, 400

Battery Power Supply

• Rechargeable batteries ensure constant power supply.

• Design for emergency 1 day power supply

Battery

- Characteristic:
 - 12 V/ 446 AH at 100 hr rate
 - Weight: 272 grams
 - Operating conditions: 40 C to 60 C
 - Cost is \$813 per battery
 - Each battery delivers 53.5 Watts

Power Requirements

• The system requires 9.2 kW

• We will need 172 batteries to provide 9.2 kW

• Total cost of \$140,000

- Tent Size
- Tent Volume = $25,000 \text{ ft}^3$
- 79% $N_2 \& 21\% O_2$ needed
- CO₂ & H₂O vapor removed

- O₂ Produced by unit per day
- Amount of O₂ 5 men need per day
- Air Needed in Tent = 25,000 ft³ = 19,750 ft³ N₂ & 5,250 ft³ O₂
- Time Needed to Fill Tent with $O_2 = 5.5$ days

- N₂ needed
 - $-2 \ge 800 \text{ L}$ Liquid N₂
- $CO_2 \& H_2O$ removed
 - -1 person = 234 moles / day
 - -5 man team = 27,000 L of each / day
- Silica gel Molecular Sieve System

- Two Systems Used
 1 Adsorbing & 1
 Desorbing
- Columns will regenerate 4 Times / day
- Regenerate by Heating Columns to 300 °C

- H₂O Vapor Removed
 - Want 30% Humidity
 - Need 7,500 ft^3
 - If 27,000 ft³ H₂O removed, Air should stay at 30% Humidity
 - Silica Gel Adsorbs 6,750 L H₂O
 / time
 - 0.481 L / Column
 - Need 4 L Silica Gel
 - Column = 1 ft high & 1.8 in diameter
 - Silica Gel cost = 643.

- CO₂ Removed
 - 27,000 ft³ / day
 - Molecular Sieve 13X
 Adsorbs 6,750 L CO₂ / cycle
 - 65.3 L / column
 - 262 L Molecular Sieve 13X
 - Column = 4 ft high & 10.3 in diameter
 - -13X Cost = \$70,100

Economics

- Identified Possible Applications for the Process
 - Steel-making Industry
 - Paper Manufacturing
 - Sewage Treatment
 - Medical Use
 - Life Support Applications

Economics

• Industrial Scale Applications - Typical Plant produces 2000 tons O₂ per day – For Our Process: $(56 \text{ mil. mol } O_2 / \text{ day})(1 \text{ mol cat. } / 182.4 \text{ mol } O_2 \text{ day})$ = 307.000 mol cat. At catalyst cost of \$25,200 / mol cat. Total catalyst cost would be \$7.7 billion! Compared to less than \$200 million for a **Cryogenic Plant**

Economics

- Small Scale Applications
 - Laboratory
 - Home Medical Use
 - Space Station
 - Mars Exploration

On Earth

- For laboratory or home use, compressed oxygen costs less than \$0.30 per 100 scf.
- Comparable Oxygen from Water unit = no less than \$50,000
- Not worthwhile when maintenance and energy costs are included.

In Space

• To provide a 5 man crew with oxygen:

- Electrolysis requires 12.7 kW

- OFW only needs 9.2 kW

Comparison

- Thermodynamic Efficiency: $\Delta H_{RXN} H_2 O$ Energy Required
- $\Delta H_{RXN} H_2 O = 686 MJ$

•TE electrolysis = 686 MJ / 1080 MJ = 63.5 %

•TE OFW = 686 MJ / 795 MJ = 86 %

Comparison

- Electrolysis total cost \$1,275,000
 - Electrolysis equipment cost approx. \$720,000
 - Additional cost for power supply \$555,000
 - Power supply is 44% total cost
- OFW total cost \$689,000
 - OFW unit cost \$295,000
 - Power supply costs \$394,000
 - Power supply is 57% total cost

Comparison

• Advantages of OFW over electrolysis:

For electrolysis, 38% more energy means
 38% more solar panel area required

Potentially much less than 1/2 of the cost of electrolysis

Uncertainties

• Experimentation to test catalyst useful life

• Continuous reaction efficiency

• Reactor scale-up

Conclusions

- Water can be used for O₂ production
- Eventually plants will be used
- Waste H₂ stream has many possibilities
- Infinite space exploration potential
- Nifty thinking on our part