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New Technology

• A recently discovered technology uses the 
compound

[H2O(terpy)Mn(O)2Mn(terpy)OH2](NO3)3 

(oxygen evolving complex OEC)
to catalyze the evolution of oxygen from 
water.



Project Objective

• To develop and design a profitable process 
that uses the OEC to produce oxygen from 
water.  



Proposal
• We propose a process that will use the OEC 

with a series of multifunction reactors, a 
hydrogen oxygen separator and solar power 
to provide life-supporting oxygen on 
manned space exploration missions.  

• As a basis for comparison we examine 
oxygen production to support a five man 
crew.  



Space Exploration

• Currently, water electrolysis provides 
oxygen for the International Space Station 
and Mir.  

• Also electrolysis is proposed for Mars 
exploration.

• Our task is to see if we can offer advantages 
over electrolysis. 



Presentation Outline

• How the Chemistry Works

• Process Design / Technical Details

• Mars Logistics

• Economic Justification

• Conclusion



Chemistry

• Process utilizes 2 sets of reactions.
– Oxygen Production/Catalyst Regeneration
– Sulfuric Acid Regeneration/O2 Recovery

• 2 reactors involved
– 1 CSTR and 1 PFTR

• After several revisions to original design



Main Catalyst

• C30H22Mn2N6O2

• In the process, the 
hydrated from is used.

• C30H26Mn2N6O4

• This has an additional 
water molecule 
attached to the Mn
atom.
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Overview of Chemistry

• Oxygen Production/Catalyst Regeneration
17H2O + H2SO4 → 17H2 + 8O2 + H2SO5

• Sulfuric Acid Regeneration/O2 Recovery
H2SO5 → H2SO4 + ½O2

• Overall 
– 17H2O → 17H2 + 8.5O2

– Daily:  2400H2O → 2400H2 + 1200O2



Chemistry: In the Beginning

• Original Design was based on a direct scale 
up from the chemistry
– Everything added to a beaker was poured into a 

batch reactor
– Very Complicated Design



Problems:  In the Beginning

• H2SO4 regenerated NO/NO2 reaction
– Air contamination

• Many reactors 
– Complicated PFD



The Beginning… ugly
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The Middle Ages

• We get wiser, eliminate NO/NO2
– Equipment Eliminated

• 1 Reactor
• 1 Separator
• 2 Pumps

– Healthier solution regenerates with MnO2
catalyst

• No new chemicals added



Still in the Dark

• Problem:  Perpetual Acid Dilution
• Still complicated PFD



Not so Bright PFD
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Chemistry Conquered:  Bright 
Ideas 

• Realize catalyst regeneration and O2
production can occur simultaneously
– Allows for continuous process

• Possible because
– Catalyst not affected by pH
– O2 production is the Rate Limiting Step 



PFD a Chemical Engineer can be 
Proud Of
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Individual Reactions

• Oxygen Production/Catalyst Regeneration
2C30H26Mn2N6O4 + 16H2-O → 4C15H11N3 + 2MnO4-- + 2Mn3+ + 8O2 + 40H+ + 44e-

2MnO4
- + 16H+ + 10e- → 2Mn2+ + 8H2O 

7H2SO4 + 7H2O → 7H2SO5 + 14H+ + 14e-

34H+ + 34e- → 17H2

2Mn2+ + 2Mn3+ + 4C15H11N3 + 6H2SO5 + 2H2O + 4H+ + 14e-→ 2C30H26Mn2N6O4 + 6H2SO4

17H2O + H2SO4 → 17H2 + 8O2 + H2SO5

• Sulfuric Acid Regeneration/O2 Recovery
H2-SO5 + H2O → H2SO4 + H2O2 (in the presence of MnO2 catalyst)
H2O2 → H2O + ½O2 (in the presence of MnO2 catalyst)

H2SO5 → H2SO4 + ½O2



Theoretical Thermodynamics

• Reaction requires 285.8 kJ/mole H2O
• Need 2400 moles H2O per day

– 685.920 MJ per day
– 7.94 kW per day
– Actual numbers are higher due to pumping, 

heat loss, etc…



Continuous System
• Advantages:

– Simple operations
– Smaller space occupied
– Less catalyst required
– Low equipment cost
– Heat integration 
– Low operating cost
– Keep the O2 concentration constant



Continuous Design PFD
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Continuous System (cont.)
• Require two reactors

• Total reactor volume 30 L

• Reactor costs $15,500 
(Including heat exchanger)



Continuous System (cont.)

• CSTR:
– Produce O2

– Regenerate catalyst
– Condition:

• Pressure: 9 atm
• Temperature: 25oC



Continuous System (cont.)
Experimental Reaction Rate
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Continuous System (cont.)

• CSTR: 
– Volume: 20L 
– Energy required: 8.4kW
– Catalyst used: 10.1 moles
– Feed water flow rate: 2.8L/hr
– Sulfuric acid 0.57M, flow rate: 111L/hr



Continuous System (cont.)

• PFTR
– Regenerate sulfuric acid
– Enthalpy change: -0.27kW
– Catalyst: MnO2

– Condition:
• Pressure: 9 atm
• Temperature: between 50 and 100oC



Continuous System (cont.)

• PFTR:
– Volume: 10L
– ID = 15cm
– Length 56cm
– Feed flow rate: 111L/hr
– Catalyst lined reactor tubes



Definition of the problem
Design a particular process that can meet 
the requirements.

Feed flowrate = 1200 mol O2/day
Purity = 100%

Hydrogen Oxygen Separation



Less is more
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Membrane
Goal: Maximum recovery of Oxygen

Topological Optimization

Several different flowsheets were 
considered

Optimization includes: Feed/permeate 
pressure ratio, Number of membrane units 
and recovery of hydrogen.



Excel Based Program



Spreadsheet



Optimization Equations
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Engineering Ideas

12Membrane Units

64%62%Recovery of Oxygen

100%98%Oxygen Concentration

Featuring a ReactorWithout Reactor

Optimized Flowsheets



Results

Oxygen Profile Across Membrane
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Optimized Membrane
F: 5,577 mol/day

xO2: 0.34

F: 1,237 mol/day

xO2: 0.98

xH2: 0.66 F: 4,340 mol/day
yH2: 0.75

Membrane Separation
Unit

• Recovery of Oxygen: 65 %
• Pressure Ratio: 9
• PRISM® hollow fiber membrane
• Membrane Area: 17 m2

• Estimated cost: $17,000



Reactor 3

2H2 + O2→ 2H2O 

PFTR
1,200 mol O2/day

• Complete purification of Oxygen
• Catalyst: a fixed-bed 0.5% Platinum
• Volume: 0.5 L
• Estimated cost: $700

25 mol H2O/day

1,237 mol/day

yO2: 0.98

yH2: 0.02



Reactor 4

2H2 + O2→ 2H2O 

PFTR
2,400 mol H2/day

• Complete purification of Hydrogen
• Catalyst: a fixed-bed 0.5% Platinum
• Volume: 2.7 L
• Estimated cost based on Pt cost: $3800

1300 mol H2O/day

4250 mol/day

yO2: 0.15

yH2: 0.85



Cost Breakdown  

$3,700$3,7001Reactor 4

$3,800 $3,800 1Reactor 2

$500$5001Heat exchanger

$294,220****Total Unit Cost

$254,500 $25,200 / mol10.1 molCatalyst

$480 $160 3Liquid Pumps

$3,600 $3,600 1Water Pump

$17,000 $17,000 1H2-O2 Separator

$700 $700 1Reactor 3

$10,100 $10,100 1Reactor 1

Total CostPrice / Unit QuantityUnit

Table 1: Price Breakdown 1200 mole per Day Ex.



Water in Mars
• Where can we find water in Mars?

- North pole: 75% of top 3 ft of soil is ice 
- Subsurface as liquid

• How much water is on Mars?
- 0.03% of mars weight



What to do with H2 produced?

• Vent H2 gas to the Martian atmosphere

• Future Options:
– Produce more water from CO2

4H2 + CO2 2H2O + CH4

– Methane can be liquefied and used for space 
vehicle propulsion



Power Supply

• Total system energy requirements 9.2 kW

• Mars may receive 44% less solar radiation than 
Earth

• Solar panel area needed: 1880 ft2

• 139 panels cost $83, 400



Battery Power Supply

• Rechargeable batteries ensure constant 
power supply.

• Design for emergency 1 day power supply



Battery

• Characteristic:
– 12 V/ 446 AH at 100 hr rate
– Weight: 272 grams
– Operating conditions: - 40 C to 60 C
– Cost is $813 per battery 
– Each battery delivers 53.5 Watts



Power Requirements

• The system requires 9.2 kW 

• We will need 172 batteries to provide 9.2 
kW

• Total cost of  $140,000



Establishing an Atmosphere in Tent 
on Mars

• Tent Size
• Tent Volume = 25,000 ft3

• 79% N2 & 21% O2 needed
• CO2 & H2O vapor 

removed



Establishing an Atmosphere in Tent 
on Mars

• O2 Produced by unit per 
day

• Amount of O2 5 men need 
per day

• Air Needed in Tent = 
25,000 ft3 = 19,750 ft3 N2 
& 5,250 ft3 O2

• Time Needed to Fill Tent 
with O2 = 5.5 days



Establishing an Atmosphere in Tent 
on Mars

• N2 needed
– 2 x 800 L Liquid N2

• CO2 & H2O removed
– 1 person = 234 moles / day
– 5 man team = 27,000 L of each / day

• Silica gel - Molecular Sieve System



Establishing an Atmosphere in Tent 
on Mars

• Two Systems Used
– 1 Adsorbing & 1 

Desorbing

• Columns will 
regenerate 4 Times / 
day

• Regenerate by Heating 
Columns to 300 oC 



Establishing an Atmosphere in Tent 
on Mars

• H2O Vapor Removed
– Want 30% Humidity
– Need 7,500 ft3

– If 27,000 ft3 H2O removed, Air 
should stay at 30% Humidity

– Silica Gel Adsorbs 6,750 L H2O 
/ time

– 0.481 L / Column 
– Need 4 L Silica Gel
– Column = 1 ft high & 1.8 in 

diameter 
– Silica Gel cost =$643.



Establishing an Atmosphere in Tent 
on Mars

• CO2 Removed
– 27,000 ft3 / day
– Molecular Sieve 13X 

Adsorbs 6,750 L CO2 / 
cycle

– 65.3 L / column
– 262 L Molecular Sieve 

13X
– Column = 4 ft high & 10.3 

in diameter 
– 13X Cost = $70,100



Economics

• Identified Possible Applications for the 
Process
– Steel-making Industry
– Paper Manufacturing
– Sewage Treatment
– Medical Use
– Life Support Applications



Economics

• Industrial Scale Applications
– Typical Plant produces 2000 tons O2 per day
– For Our Process:

(56 mil. mol O2 / day)(1 mol cat. / 182.4 mol O2 day) 
= 307,000 mol cat.

At catalyst cost of $25,200 / mol cat. 
Total catalyst cost would be $7.7 billion!
Compared to less than $200 million for a 

Cryogenic Plant



Economics

• Small Scale Applications
– Laboratory
– Home Medical Use
– Space Station
– Mars Exploration 



On Earth

• For laboratory or home use, compressed 
oxygen costs less than $0.30 per 100 scf.

• Comparable Oxygen from Water unit = no 
less than $50,000

• Not worthwhile when maintenance and 
energy costs are included.



In Space

• To provide a 5 man crew 
with oxygen:

– Electrolysis requires 12.7 kW

– OFW only needs 9.2 kW



Comparison
• Thermodynamic Efficiency:       ∆HRXN H2O

Energy Required

• ∆HRXN H2O = 686 MJ

•TE electrolysis = 686 MJ / 1080 MJ = 63.5 %

•TE OFW = 686 MJ / 795 MJ = 86 %



Comparison

• Electrolysis total cost $1,275,000
– Electrolysis equipment cost approx. $720,000
– Additional cost for power supply $555,000
– Power supply is 44% total cost

• OFW total cost $689,000
– OFW unit cost $295,000
– Power supply costs $394,000
– Power supply is 57% total cost



Comparison

• Advantages of OFW over electrolysis:

– For electrolysis, 38% more energy means 
38% more solar panel area required 

– Potentially much less than 1/2 of the cost 
of electrolysis



Uncertainties

• Experimentation to test catalyst useful life

• Continuous reaction efficiency

• Reactor scale-up



Conclusions

• Water can be used for O2 production
• Eventually plants will be used
• Waste H2 stream has many possibilities
• Infinite space exploration potential
• Nifty thinking on our part


