Ethanol Production in Oklahoma

Andy Abatiell
Jason Ireland
Joseph Odusina
Daniel Silva Rajoo
Zafar Zaidi

Scope of our study

• To determine if the production of ethanol would be a worthwhile investment in the state of Oklahoma.

- If so, determine the NPW, crops used, and plant location(s).
- If not, determine why it is not feasible.

Outline

- Introduction
 - Why Ethanol?
 - Market Analysis
- Feedstock
 - Selection Criteria
 - Crop Availability
- Possible Technologies
 - Fermentation
 - Dilute Acid Hydrolysis
 - Gasification

- Results
 - Why is a model needed?
 - Model Variables
 - Sensitivity Analysis
 - Conclusions and Recommendations

Why do we need Ethanol?

• Causes gas to burn more efficiently.

Comparisions of Oxygenated and Non-Oxygenated Gasoline

Why do we need Ethanol?

• Used as an additive in gasoline.

Problems with MTBE

• Contaminates groundwater.

Legislation

• Several states have passed or enacted MTBE phase-outs (MN, IA, NE, CA).

 Need subsidies to make ethanol production more competitive.

Current Production

- 68 Ethanol Plants
- Produced a total of2.1 billion gallons in2002

Projected Ethanol Demand

	MGal		
Α	1.8		
В	9.4		
С	74.2		
D	3.9		
E	106.2		
F	15.1		
G	10.3		
Н	13.0		
I	6.0		

Distillers Grain

- Two different types:
 - 1) Dry Distillers Grain
 - 2) Wet Distillers Grain.
- Sells for \$30/ton in wet form, and \$75/ton in dry form.
- Sold to feed different types of cattle.
- Total cattle population is 5.25 million in Oklahoma

Ethical Concerns?

• Some groups vehemently protest using Ethanol.

Why use feed crops to make gasoline?

Feedstock Analysis

• 44 million acres of land/11 million for agriculture.

• Possible feeds: barley, cotton, peanuts, switchgrass, wheat, and corn.

Selection Criteria

- Harvest Time
- Starch content of feedstock
- Transportation/Storage Cost
- Production of marketable by-products
- Cost of processing
- → Crops chosen: Wheat, Grain Sorghum and Switchgrass

Availability of Crops

Wheat Selection

- Highest selling cash crop in US and 3rd in Oklahoma (6 million acres, about 1.3 million in North Central district)
- Estimated 165 million bushels in 2003 and selling for \$3.20/Bu

Wheat Distribution in Oklahoma Total of 3.9 million tons of wheat produces a year

Grain Sorghum Selection

- Over 310,000 acres was harvested in 2002,and about 14 million bushels is to be produced in 2003/2004
- Over 70% goes to livestock in OK
- WDG byproduct high in protein content

Sorghum Distribution in Oklahoma Total of 0.49 million tons of sorghum produces a

Switchgrass Selection

- Over 3 million acres to be harvested in 2003/2004.
- Central OK is the leading switchgrass producing district in Oklahoma (~1 million acres)
- Has a high conversion to ethanol during processing.

Switchgrass Distribution in Oklahoma

Total of 4.78 million tons of switchgrass produces a year

CROPS COMPOSITION

Harvesting time

Processing Technologies

1) Dry Mill Simultaneous Saccharification/Fermentation

2) Dilute Acid Hydrolysis

3) Gasification

Fermentation Process (Dry Mill)

Mash Grinding/Cooking/Liquefaction

Cooking Column:

Starch Form: Amylose, Amylopectin

Liquefaction Vessel:

Enzyme: alpha amylase

Fermentation Process (Dry Mill)

Simultaneous Saccharification/Fermentation

Fermentation Process (Dry Mill)

Distillation/Stillage Recovery

Fermentation Process (Dry Mill)

Molecular Sieve/Dehydration

Fermentation Process (Dry Mill)

Centrifuge/Evaporation Wet Distillers Grain

Equipment Pricing

Equipment Pricing (20 MGY)			
Major Equipment (quantity)	Description (each)	Material	Cost
Hammer Mill	1.5 in to 100 mesh		\$490,000
Cooker	5100 gallons	carbon steel	\$70,000
Liquefaction Vessel	7650 gallons	carbon steel	\$85,000
Fermenter (4)	250,000 gallons	stainless steel	\$1,600,000
Pre-Fermentor Heat Exchangers (4)	840 ft^2, Fixed Tube Sheet	stainless steel	\$73,000
Vent Scrubber			\$15,000
Byproduct Storage		carbon steel	\$30,500
Cooling Tower	10 degree, 25 F range	carbon steel	\$257,000
Beer Column	D=5.5 ft 22 trays	stainless steel	\$273,000
Beer Column Condenser	1870 ft^2, Fixed Tube Sheet	stainless steel	\$31,000
Beer Column Reboiler	5600 ft^2, Fixed Tube Sheet	stainless steel	\$73,000
Rectifying Column(1)	D=7.5 ft, 30 trays	stainless steel	\$316,000
Rectifying Column Condenser	1000 ft^2, Fixed Tube Sheet	stainless steel	\$18,000
Rectifying Column Reboiler	2300 ft^2, Fixed Tube Sheet	stainless steel	\$34,000
Syrup Tank(2)	one 100,000 gallon, one 50,000 gallon	carbon steel	\$170,000
Boiler		carbon steel	\$609,000
Gasoline Storage Tank	40000 gallons	carbon steel	\$80,000
Ethanol Storage Tank	136,000 gallons, API floating roof	carbon steel	\$136,000
Molecular Sieve (9 pieces)			\$572,000
Centrifuge	HS-805L, 31.5" x 104"		\$400,000
Evaporation System	40000 ft^2		\$1,000,000
Beer Well (5)	four 100,000 gallon, one 50,000 gallon	carbon steel	\$460,000
Total Cost			\$6,792,500

Total Equipment Cost (20 MGY) = \$7 million

Equipment Cost Methodology

- Material Balances were constructed to size necessary equipment and vessels
- Pro II simulations were run to design distillation columns
- Vendor information was used to price most equipment

Dry Mill Economics

20 MGY Plant: TCI = \$35 million Operating Cost = \$10 million

Processes for Lignocellulosic Crops

Hemicellulose Hydrolysis

Cellulose Hydrolysis

Fermenters in Parallel

Xylose Fermenters

- Ferment 5 carbon sugars
- Use the yeast Pachysolen tannophilus

Glucose Fermenters

- Ferment 6 carbon sugars
- Use the yeast Sacromyces cerevisiae

Lignin Fueled Furnace

Dilute Acid Economics

20 million gallon plant:

TCI = \$50 million

Operating Cost = \$20 million

Gasifier

Fermentation

Gasification Economics

20 million gallon plant:

TCI = \$80 million

Operating Cost = \$12 million

Technology Comparison

Capital and Operating Costs 20 Mgal/yr Ethanol Plant

Plant Type	TCI Operating Cos	
	(\$)	(\$/yr)
Fermentation	35 M	10 M
Dilute Acid	50 M	20 M
Gasification	80 M	12 M

Technology Comparison (cont.)

Feedstock to Ethanol Conversions (tons ethanol / ton feed)

	Wheat	Sorghum	Switchgrass
Fermentation	0.277	0.286	0.023
Dilute Acid	0.043	0.038	0.299
Gasification	0.169	0.168	0.171

Decision to make when building a plant

Feed Source

Feed Type

Location

Technology

- Can this be done manually?
- How do we calculate all the variables and decide the optimal solution?

Relationship between feed supply and plant

What if there is more than 1 plant and many feed sources?

Feed Supply = 78 points

Plant Location = 9 points

Therefore using a model would make the calculations possible

Mathematical Model Flow

Decision for building an Ethanol plant based on

$$NPW = (Dft*Life) \begin{bmatrix} \sum (Sales) - \sum \begin{pmatrix} Bought \\ Feed \end{pmatrix} - \sum \begin{pmatrix} Transporttion \\ Cost \end{pmatrix} \\ -\sum \begin{pmatrix} Storage \\ Cost \end{pmatrix} - \sum \begin{pmatrix} Operating \\ Cost \end{pmatrix} \end{bmatrix} - \sum \begin{pmatrix} Capital \\ Investment \end{pmatrix}$$

The plant is chosen based on MAXIMIZING the NPW

Transported Feed

Storage

Operating Cost

Bought Feed

Plant Throughput

Ethanol Produced

Capital Investment

Variables which affect the profitability of the Ethanol plant

Feed

$$\sum \binom{Bought}{Feed} \leq \sum \binom{Harvested}{Feed}$$

Plant Locations

- 9-plant locations
- 78-feed locations
- 3-types of feed

Plant Throughput

$$\begin{pmatrix} Yearly \\ Trhoughput \end{pmatrix} \leq \begin{pmatrix} Max \\ Size \end{pmatrix}$$

$$\begin{pmatrix} Yearly \\ Trhoughput \end{pmatrix} \ge \begin{pmatrix} Minimum \\ Throughput \end{pmatrix}$$

$$\binom{Ethanol}{Produced} \leq \frac{(YearlyThroughput)}{12}$$

Capital Investment

$$\binom{Capital}{Investment} \leq \binom{Maximum}{FCI}$$

Storage

1st Month Storage

$$storage_{t1} = \sum_{i} {Bought \choose Feed}_{t1} - \sum_{g} {Feed \choose Process}_{t1}$$

Subsequent Month Storage

$$\sum (Storage_{t}) \leq \sum (Storage_{t-1}) + \sum \binom{Bought}{Feed_{t}} - \sum \binom{Feed}{Processed_{t}}$$

Operating Cost

$$\begin{pmatrix} Operating \\ Cost \end{pmatrix} = \begin{pmatrix} OP \\ Slope \end{pmatrix} \begin{pmatrix} Ethanol \\ Produced \end{pmatrix}$$

Transportation of Feed

Ethanol Produced

$$\sum {Ethanol \choose Produced} = \sum {Process \choose Effeciency} * \sum {Feed \choose Processed}$$

Generalized Model

- Consider only locations in Oklahoma.
- Transportation Cost = \$0.01678/ tons*mile
- Storage Cost = \$0.81/tons
- Ethanol price =\$390/tons
- Maximum Plant Capacity = 200 million gallon
- Minimum Plant Capacity = 8.7 million gallons

General Mathematical Result

					Total Feed Bought per month	
Capacity (million tons)	NPW(\$ million)	Ethanol produced (tons/month)	Plants	Capital investment (\$)	Wheat	Sorghum
0.658 \$2,508			garber	\$22,504,130	391.58	8839.26
	54822	clinton	\$21,736,270	391.58	8839.26	
		hobart	\$22,808,630	391.58	8839.26	
			broken_bow	\$20,554,580	391.58	8839.26

Plant Locations

Operating Cost

- •All plants were built in the first 2 years.
- •Start producing Ethanol in the 3rd year.
- •Each plant capacity produces 55,000 tons of ethanol per month

- Economic and Sensitivity Analysis based on
 - Feed Source Variation
 - Capacity Variation
 - Cost Variation

Deterministic and Stochastic Analysis

Conclusion

Feed Source From Bordering States

•Majority feed comes from Texas, Kansas and Colorado.

Capacity Variation

- •NPW increase linearly with plant capacity
- •Linearity is because the capacity is also a linear function of the operating cost and capital investment

- Percent Variation of Bought Feed
- •NPW increases with the availability of harvested feed
- •Increment is linear because its a function of bought feed

When Bought Feed < 10% of Total Feed Harvested

NO PLANTS BUILT

• Ethanol Price Variation

- •NPW increases the price of ethanol
- •Increment is not linear and it is a function of other variables, i.e. process feed and operating cost.
- •NPW =0 when ethanol price falls below \$0.6/gallon

Result From Ethanol Price Variation

Ethanol Price (\$/gal)	Number of Plants	Location	Capacity (tons)	Technology	Cap. Investment (\$)	NPW (\$ million)
\$0.59	0	0	0	0	\$0	\$0
\$0.60	1	Broken Bow	657860	Fermentation	\$21,000,000	\$4
\$0.75	4	Pauls Valley	657860	Fermentation	\$21,000,000	\$260
		Garber			\$23,000,000	
		Clinton			\$22,000,000	
		Broken Bow			\$21,000,000	
\$1.00	4	Garbar	657860	Fermentation	\$23,000,000	\$1,250
		Clinton			\$22,000,000	
		Hobart			\$23,000,000	
		Broken Bow			\$21,000,000	
\$1.10	4	Garbar	657860	Fermentation	\$23,000,000	\$1,900
		Clinton			\$22,000,000	
		Hobart			\$23,000,000	
		Broken Bow			\$21,000,000	

Storage Cost Variation

- •NPW decreases with the storage cost
- •Increment is not linear and it is a function of other variables, i.e. Bought feed and capacity of plant.
- •No plant will be built if the storage cost is above \$2.0/ton of feed.

Result From Storage Cost Variation

		Feed Bought (million tons)			
Stoage Cost (\$/ton)	Plants	Wheat	Sorghum	NPW (\$ million)	Capacity (tons)
\$0.50	garber	4.70	45.85	\$3,970	657860
	clinton				
	hobart				
	broken_bow				
\$0.81	garber	1.57	35.36	\$3,111	657860
	clinton				
	hobart				
	broken_bow				
\$1.00	garber		35.36	\$2,814	657860
	clinton	2.94			
	hobart	2.34			
	broken_bow				
\$2.00	garber	0.00	9.42	\$2,053	657860
	clinton				
	hobart				
	broken_bow				

Transportation Cost Variation

- •NPW decreases with the transportation cost
- •Cost is related to the bought feed and distance
- •No plant will be built if the storage cost is above \$0.2/ton of feed.

Transportation Cost = \$0.004684ton

Plant Locations

Operating Cost Variation

- •NPW decreases with the operating cost
- •It is a function of the number of plants and process feed.
- •NPW =0 when the operating cost increases by a factor of 3.2

Deterministic Model Results

- It is feasible to pursue ethanol production in Oklahoma provided that:
 - 4 proposed plants use fermentation technology.
 - Feed supply is from Oklahoma and parts of Texas,
 Colorado and Kansas
 - Feed chosen is mostly sorghum and wheat.
 - Ethanol Price > \$.60/gal
 - − The storage cost < \$2/ton</p>
 - Transportation Cost < \$0.2/ton
 - The operating cost < 3.2 times the original

Stochastic Model Optimization

Include mathematical model optimization with scenarios.

Perform risk analysis on Ethanol Plant Feasibility.

50 to 100 scenarios were required for the stochastic model.

Parameters varied:

$$\begin{pmatrix} Harvested \\ Amount \end{pmatrix}_{s} = normal \begin{pmatrix} Harvested \\ Mean \end{pmatrix}, Sdt$$

$$\begin{pmatrix} Operating \\ Cost \end{pmatrix}_{s} = normal \begin{pmatrix} Operating \\ Cost Mean \end{pmatrix}, Sdt \end{pmatrix}$$

Stochastic Model Results with 5 scenarios

		Capital Investment for year plant is built (in million dollars)		
Plant Location	Technology	yr1	yr2	
broken_bow	FER	\$20.55		
broken_bow	HYD		\$30.83	

Resource requirement for Stochastic Model Optimization

Model Size:

- 100 scenarios each for 3 parameters.
- 118 feed source locations
- 9 plant locations
- 3 feed types
- 3 technologies
- 240 months of plant life
- 2 GB of RAM used for data compilation

Conclusions

- It is feasible to pursue ethanol production in Oklahoma according to the Deterministic model
- Preliminary analysis on Stochastic model proposed an alternate solution
- Further analysis on the Stochastic model can be completed once necessary resources are made available