Ð

Arsenic Removal from OU Water

OBJECTIVES

To find an economical solution to the Arsenic problem on the OU campus

To make the OU campus self-sufficient and compliant with the new 2006 EPA rule of <u>10 ppb</u> instead of <u>50 ppb</u> As. minimum

EFFECTS of ARSENIC

> Skin alterations and lesions

Repeated exposure may lead to cancerous mutations

Nervous & Vascular system degenerative diseases

GEOGRAPHY

GEOLOGY

Well Data

> Average pH

Sulfate content 40 ~ 55 mg/liter

➢ Arsenic 35 ~ 45 ppb

OU Situation

Max production capacity: 1.8×10⁶ gallons / day

> Average daily usage:

 1.1×10^6 gallons / day

> Peaks around August @ 2.0×10^6 gallons / day

Projected growth over 20yrs:

Previous Solutions and Available Options

CH2M-Hill: Colorado based consulting company (development, environmental solutions, design...)

→ CH2M Hill Considered OU & the City of Norman as one problem

<u>CE 5244</u>: Class project to find optimal solution

CH2M-Hill Report Options

> Drill new wells
> Coagulation/Filtration
> Ion Exchange
> Nanofiltration
> Blending water

CE 5244 Recommendations April 2001

Recommended reconfiguration, blending and Ion Exchange for Norman

> Recommended C/F for OU

Water Purchase Option

OU buys water from City of Norman exclusively

Cost between \$0.85/1000 gallons and \$1.14/1000 gallons of water

Least work for OU

May not be most economical option, lots of parameters

Nanofiltration

Ð

> Uses membrane separation

Differences in pressure cause water to separate into 2 streams

> Very large waste stream (>35%)

Membranes have high capital cost

> FeCl₃ is added to water

Precipitates Fe(OH)₃

> Arsenic adsorbs to Fe(OH)

FeOH is filtered from the water

Fair amount of waste

> Water run through bed of resin

> Arsenic ions exchange with chloride

Resin bed is regenerated by brine

> Very low capital cost!!!

> Very low operating cost!!!

Annual and Capital Costs

	Capital Costs	NPC (after 20 years)
Nanofiltration	over \$10,000,000	over \$10,000,000
Coagulation/Filtration	\$3,400,000	\$5,700,000
Water Purchase (\$1.14/1000 gal)	None	\$5,565,000
Water Purchase (\$0.85/1000 gal)	None	\$4,150,000
Ion Exchange	\$1,870,000	\$3,600,000

Solutions Comparison

Preliminary Conclusion

<u>Ion Exchange</u>

most ideal solution!!!

✓ Economically Attractive
 ✓ Self Sufficiency
 ✓ Immediate Implementation

ARSENIC & ION EXCHANGE CHEMISTRY

Arsenic Chemistry

Arsenic (III)
 -Non ionic form (H₃AsO₃)
 -Arsenite

Arsenic (V)
 -Ionic form (HAsO₄²⁻)
 -Arsenate

Arsenic/IX Chemistry

Arsenite Arsenate
 -Sodium Hypochlorite
 pre-treatment

 Arsenate ion trades places with Chloride ion.
 Resin has higher selectivity to sulfate.

Bed causes pH to go down.

Arsenic/IX Chemistry

> Regeneration by Concentrated NaCl -Le Chatelier's Principle

> Arsenate goes to precipitation tank.

> pH lowered by H_2SO_4

FeCl₃ added to precipitation tank to precipitate Fe(OH)₃

ION EXCHANGE PROCESS

Sa

-0

Safety

 Process must be designed so that arsenic is not allowed to breakthrough.

Economic Evaluation

(IX vs WP options)

Preliminary Findings

Qı

•Assume Constant Demand of 1.1 MGD

- CI = \$2.1 million (based on capacity)
- OC = \$110,000/year (labor, power, and chemical)
 Project Lifetime =20yrs

Calculate NPC!

Water Purchase Calculation

•Assume Constant Demand of 1.1 MGD

•Constant Water Price = \$1.14/1000gal

→Low Estimate!

•Project Lifetime = 20yrs

Sources of Uncertainty

Several Unknown Factors in Design:

Future Water Price
Future Water Demand
Initial Plant Capacity
Unforeseen Changes In Well-field
Later Additions To Existing Plant

Calculation Complexity

Mathematical Model Description

<u>Purpose</u> – Simulate OU As situation <u>Goal</u> – Cheapest Solution (by minimizing NPC)

Chooses between IX or WP
Meets Water Demand
Decides When/How Much to Build
Expands Capacity As Needed
Buys Wholesale or Emergency
Borrows/Repays Money

\$3.00/1000 gallons Demand Based \$1.14/1000 gallons Whole Sale

Capital Investment and capacity

- Fixed: Building, Feed Facility, Brine Unit
- Capacity Based: Number and Sizing of Columns

Water Consumption Projection

• Solution must meet the needs of OU by month

Significant Variables

 Capital Investment and Operating Cost per 1000 gallons/day should show significant variation.

• "Wholesale" water price should be shown for \$1.14 (current) and \$0.85 (possible) per 1000 gal / day.

• Water Demand is randomly generated.

Model in Math Language:

Main Equations:
$$TotalCost = \sum_{s} p_s C_s$$
 $C_s = \sum_{yr} C_{yr} = \sum_{yr} (CI_{yr} + OP_{yr} + \Pr ice_{yr} * WP_{yr} * (1+i)^{yr-1} - Borrowed_{yr} + Repaid_{yr}) * df_{yr}$ $CI_{yr} = a * z_{yr} + b * Cap_{yr}$ $Demand_{yr,mo,s} = Q_{yr,mo,s} + WP_{yr,mo,s}$ $OP_{yr} = \alpha_F \sum_{\xi=1}^{yr} z_{\xi} + \beta \sum_{mo} Q_{yr,mo,s}$ $ztot_{yr} = \sum_{\xi} z_{\xi} if \xi \leq yr$ $\Pr ice_{yr,s} = WholeSale \Pr ice * y_{yr,s} + Emergency \Pr ice * (1 - y_{yr,s})$ Finance Equations $Debt_{yr,s} = (1+i) * Debt_{yr-1,s} + Borrowed_{yr,s} - Repaid_{yr,s}$

Main Constraints:

$$\begin{aligned} CapTot_{yr} &= \sum (Cap_{\xi} + CapAdd_{\xi}) & \text{if } \xi \leq yr & Cap_{yr} \leq MaxCap * z_{yr} \\ CapTot_{yr} \geq^{\xi} Q_{yr,mo,s} & \sum_{mo} WP_{yr,mo,s} -1000 * y_{yr,s} \geq 0 \\ \hline \text{Finance Constraints:} & C_{yr,s} \leq Budget & Debt_{20,s} = 0 \\ Repaid_{yr,s} \geq 2 * i * Debt_{yr-1,s} \end{aligned}$$

Mathematical Model Code:

*Scenario Probability

*CAPITAL INVESTMENT CALC captotal(yr).. captot(yr) =e= sum(yrr\$(ord (yrr) le ord(yr)),cap(yrr)+capadd(yrr)); qcap(yr,mo,s).. captot(yr) =g= q(yr,mo,s); capacity(yr).. cap(yr) =l= maxcap*z(yr); capinv(yr).. ci(yr) =e= (a*z(yr)+b*cap(yr))*(1/(1+df)**(**ord**(yr)-1)); waterdemand(yr,mo,s).. demands(yr,mo,s) =e= q(yr,mo,s)+wp(yr,mo,s); totfac(yr).. ztot(yr) =e= sum(yrr\$(ord (yrr) le ord(yr)),z(yrr)); opcost(yr,s).. op(yr,s) =e= (alpha * ztot(yr) + beta(s) * sum(mo,q(yr,mo,s)))*(1/(1+df)**(ord(yr)-1)); watcost(yr,s).. wcost(yr,s) =e= yrcost(yr,s)-op(yr,s)-ci(yr)+borrowed(yr,s)-repayed(yr,s); Capaddd(yr).. capadd(yr) =1= maxcap * x(yr); constr(yr).. x(yr) =1= ztot(yr-1); capinvadd(yr).. ciadd(yr) =e= (aa*x(yr)+1.1*b*capadd(yr))*(1/(1+df)**(**ord**(yr)-1)); *VARIABLE WATER PRICE chooseprice(yr,s).. **sum**(mo,wp(yr,mo,s))-1000*y(yr,s) =g= 0; *waterprice(yr,s).. price(yr,s) =e= (34.2*y(yr,s)+45*(1-y(yr,s))); *making price linear pone(yr,s).. m(yr,s)-y(yr,s)*40000 =1=0; ptwo(yr,s).. m(yr,s) =g= 0; pthree(yr,s).. (**sum**(mo,wp(yr,mo,s)) - m(yr,s)) - (1-y(yr,s)) *40000 =1=0; pfour(yr,s).. sum(mo,wp(yr,mo,s))-m(yr,s) =g=0; *pricedisplay(yr,s).. price(yr,s)=e=(34.2*m(yr,s)+45*(sum(mo,wp(yr,mo,s))-m(yr,s))); *FINANCE BUDGET yearcost(yr,s).. yrcost(yr,s) = e= op(yr,s)+ci(yr)+(1+inflate)**(ord(yr)-1)*(34.2|*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(1+inflate)**(ord(yr)-1)*(34.2)*m(yr,s)+90*(sum(mo,wp())*(sum(m budgetcost(yr,s).. yrcost(yr,s) =l= budget * (1/(1+df))**(ord(yr)-1); debteqn(yr,s).. debt(yr,s) =e= (1+i)*debt(yr-1,s)+borrowed(yr,s)-repayed(yr,s); debtfinal(s).. debt('20',s) =e= 0; repay(yr,s).. repayed(yr,s) =g= 2*i*debt(yr-1,s); *repay(yr,s).. repayed(yr,s) =g= Sum(yrr\$(ord (yrr) le ord(yr)),i*(1+i)**(20-ord(yrr))*debt(yrr,s)/((1+ *TOTAL COST

•Facility Built In Year 1 (1.6 MGD Capacity)

- •Loan (Repaid Over 10 Yrs)
- •Water Purchased In Peak Months
- No Facility Upgrades For 20 Year Period
- Net Present Cost Of \$3.1 Million

Implications of Model Results

2600 ft² Facility Area

- 2000 Gallon Waste Brine Container
- Four 6ft Dia. IX Columns
- Requires Purchase Of Ferric Chloride, Sodium Hydroxide, Sulfuric Acid And Salt.
- Highly Automated

• Labor requirement of less than \$20,000/year (CH2M Hill)

GEOGRAPHY

Savings per year Current Dollars

Savings Increase In Year 12!

Water Costs \$0.60/1000gal to Produce

Risk Assessment

Maximum Field Capacity

Shows decisions if capacity is lower

Water Price Sensitivity

Uncertainty Analysis

Q

Doubled values within "Treatment Area"

400% (for \$0.85) or 600% (for \$1.14) cost increase required for WP to become favorable.

• Even with high variability of parameters, treatment is favorable.

Safety

Safety

More Bed Volumes = Higher Number of Chemicals Required = Higher Operating Cost

Safety

Conclusion

Ð

Conclusion:

- At either price level of water, Ion Exchange treatment costs less
- Self-sufficiency and full utilization of natural resources via IX treatment
- •By treating water, OU will not contribute as greatly to scarcity of water in the Central Oklahoma Area
- Waste produced roughly equivalent to one Norman-issued trashcan full of non-hazardous waste per day

Explore waste dilution to reduce As content to < 0.5% solid concentration (TC)
Water by-pass to reduce regeneration
Permissible TBLL for Norman

Dried precipitate concentration to meet TCLP

Conclusion:

