
A Survey on Congestion Control and Scheduling

for Multipath TCP: Machine Learning vs Classical

Approaches

Maisha Maliha

School of Computer Science

University of Oklahoma

Norman, Oklahoma, USA

Email: maisha.maliha-1@ou.edu

Golnaz Habibi

School of Computer Science

University of Oklahoma

Norman, Oklahoma, USA

Email: golnaz@ou.edu

Mohammed Atiquzzaman

School of Computer Science

University of Oklahoma

Norman, Oklahoma, USA

Email: atiq@ou.edu

Abstract—Multipath TCP (MPTCP) has been widely used as
an efficient way for communication in many applications. Data
centers, smartphones, and network operators use MPTCP to
balance the traffic in a network efficiently. MPTCP is an ex-
tension of TCP (Transmission Control Protocol), which provides
multiple paths, leading to higher throughput and low latency.
Although MPTCP has shown better performance than TCP in
many applications, it has its own challenges. The network can
become congested due to heavy traffic in the multiple paths
(subflows) if the subflow rates are not determined correctly.
Moreover, communication latency can occur if the packets are
not scheduled correctly between the subflows. This paper reviews
techniques to solve the above-mentioned problems based on two
main approaches; non data-driven (classical) and data-driven
(Machine Learning) approaches. This paper compares these two
approaches and highlights their strengths and weaknesses with
a view to motivating future researchers in this exciting area of
machine learning for communications. This paper also provides
details on the simulation of MPTCP and its implementations in
real environments.

Index Terms—Multipath TCP, congestion control, scheduling,
deep reinforcement learning, machine learning

I. INTRODUCTION

C
OMMUNICATION is key in many domains, such as

defense, hospitality, technology, and space. In telecom-

munications, packet switching is a method of grouping data

in smaller packets for faster communication [1]. One of the

earliest packet-switched networks started with the Advanced

Research Projects Agency Network (ARPANET) [2] in the

United States, which is also called the forerunner of the

Internet. Today, the Internet has expanded and now consists

of a set of protocols for global communications. Basically,

a protocol is a set of rules that the sender and receiver must

agree on to communicate with each other. The two well-known

Transport layer protocols are User Datagram Protocol (UDP)

[3] and Transmission Control Protocol (TCP). UDP does not

need any handshaking, which means the receiver does not send

any acknowledgment to the sender when it receives a message.

UDP thus leads to faster communication.

TCP [4] provides more consistent communication by con-

sidering handshaking between the sender and receiver. With

millions of devices connected to the Internet, there is a demand

for faster communication, but TCP fails to meet that need.

It’s because of TCP’s congestion control algorithm, which

decreases the throughput (message delivery rate) in response

to the loss of packets in the network. Also, the handshaking

of TCP increases the time necessary for a packet to travel,

resulting in higher latency. Keeping in mind these problems,

Multipath TCP (MPTCP) has been introduced by the Internet

Engineering Task Force (IETF) [5] to use multiple paths

effectively and efficiently between the sender and receiver.

TCP connections can experience packet losses or connection

drops, resulting in a poor user experience [6]. MPTCP can use

multiple TCP connections, known as subflows, in parallel to

overcome TCP’s limitations. One of the main goals of MPTCP

is to control congestion and maintain traffic flows. Another

focus of MPTCP is scheduling the packets over different sub-

flows to send packets with the smallest round-trip time (RTT)

[7], which is the time taken to send a data packet to the

destination and receive an acknowledgment from the receiver.

There are a set of traditional techniques such as Dynamic-

Window Coupling (DWC) [8], Opportunistic Linked Increases

Algorithm (OLIA) [9], Balanced linked adaptation (BALIA)

[10], and Adaptive and Efficient Packet Scheduler (AEPS) [11]

that control congestion or simultaneously schedule packets

over multiple paths in MPTCP.

Since the standardization of MPTCP, a lot of classical

approaches have been proposed to improve the performance

of the network in terms of throughput and latency, but most of

them perform poorly in highly dynamic networks. Recently,

data-driven approaches, which are mostly based on Deep

Reinforcement Learning, perform much better in dynamic

networks because of their ability to learn the network con-

ditions. To the best of our knowledge, there have been only

a few proposals on controlling congestion while scheduling

packets using deep reinforcement learning-based approaches.

Although some methods have been proposed to control con-

gestion, those works have not focused on reducing RTT. Some

researchers have proposed schedulers to reduce latency, but

they did not consider achieving high throughput.

Proceedings of the of the 18th Conference on Computer

Science and Intelligence Systems pp. 49–61

DOI: 10.15439/2023F9832

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 49 Invited contribution



One of the biggest benefits of using MPTCP is its capacity

to use all the available subflows and boost the network’s

throughput. However, to achieve high goodput, a scheduling

strategy is important. Scheduling in MPTCP distributes pack-

ets over different subflows based on the smallest RTT. Sched-

ulers using classical approaches, like [12]–[14], increased the

throughput but failed to adapt to the dynamic nature of a

real-world network. They were tested using simulation, which,

of course, does not emulate the real-world scenario. Machine

Learning and Reinforcement Learning models have improved

the above drawbacks as they can learn from past experience

and they are more robust to the dynamic nature of real-world

networks; However, machine learning techniques are usually

slower than classical approaches and need a huge dataset to

train the models [15]–[17].

A. Contributions

The objective of this paper is to provide a brief overview

of the existing work on MPTCP, including both classical

and machine learning-based approaches. We discuss how

previous researchers have addressed MPTCP challenges and

summarized their solutions. Previous works have reviewed

the existing congestion control and scheduling techniques for

MPTCP [7], [18]–[21]. Among those works, some review

papers have focused on either congestion control of MPTCP

or only the scheduling of MPTCP, while others have reviewed

only the existing work on MPTCP establishment. There are

also some works that have mentioned both congestion control

and scheduling but have not focused much on the scheduling-

based works of MPTCP. The contributions of this paper are

as follows:

• Discuss the difference between the traditional TCP and

MPTCP communication protocols.

• Discuss in detail both the congestion control and the

packet scheduling problems separately.

• Comparison between the performance of ML-based and

classical algorithms in terms of controlling congestion

and packet scheduling.

• Summarize basic concepts in MPTCP, including the

establishment of MPTCP in real-world platforms and

simulators.

• Highlights advantages and limitations of previous works

that can help the readers investigate future improvements

on MPTCP.

The rest of our paper is organized as follows; Section II

describes the terminologies in communication and deep rein-

forcement learning. Section III compares TCP and MPTCP.

Sections IV and V describe previous works on congestion

control and scheduling of MPTCP, respectively. Section VI

focuses on the performance of both congestion control and

packet scheduling. MPTCP implementations in the kernel and

NS-3 are described in Section VII. Lastly, in Section VIII, we

conclude our survey by discussing future works in MPTCP

congestion control and scheduling.

II. BACKGROUND & TERMINOLOGIES

A. Overview of TCP

TCP is a connection-oriented communication standard that

computer applications use to communicate over a network.

It is a packet transfer protocol in the Transport Layer [22]

of the TCP model. TCP uses only one dedicated path for

packet transfer. Though TCP guarantees data integrity of the

packets, it has to face packet loss, delay and other problems

which are discussed in Section III. Also, network congestion

is another major problem in TCP which is discussed briefly

later. Section II-B summarizes some concepts in TCP which

would be in common with MPTCP and they are also used in

congestion control.

Fig. 1. Illustration of the RTT of a packet from the sender to the receiver.

Fig. 2. Illustration of shared bottleneck scenario in a network [23].

B. Some Concepts in TCP

• Round Trip Time (RTT): The time required to send

a packet from the client to the server, and the time it

takes for the server to receive an acknowledgment about

receiving the packet is known as the round trip time

(RTT). Reducing the round trip time is a primary focus

of MPTCP. Figure 1 illustrates the meaning of RTT.

• Throughput vs Goodput: Throughput refers to the total

number of packets transferred to the destination within

a fixed time frame. On the other hand, Goodput is the

number of meaningful packets that are delivered to the

destination within a given time frame.

• Low Latency vs High Latency: Latency refers to the

amount of time required to send a packet from source

to destination and back again. Low latency is always

preferable.

50 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



• Congestion Window (CWND): The congestion window

decides the number of bytes or how many packets will be

sent at a given time. Depending on the larger congestion

window size, the throughput will also be maximized.

Congestion window size has been determined by the slow

start and congestion avoidance phases of TCP which will

be discussed in the next part.

• Bottleneck vs Shared Bottleneck: Bottleneck occurs

when there is not enough network capacity in a connec-

tion to handle the current volume of traffic. On the other

hand, when a bottleneck link is shared between multiple

subflows, it is referred as a shared bottleneck which is

useful for maximizing the throughput. Figure 2 illustrates

the concept of a shared bottleneck scenario.

C. Congestion Control in TCP

TCP’s congestion control mechanism has three phases; (1)

slow start phase; (2) congestion avoidance phase; and (3)

congestion detection phase. The basic difference between these

three phases is the rate of increase in the congestion window

size.

• Slow Start Phase: Slow start phase works as a part of

the congestion control algorithm in TCP by controlling

the amount of data flow in a network. When a network

becomes congested from excessive data in the network,

the slow start phase chokes the traffic by limiting the

congestion window size. In the slow start phase, the

sender sends a packet that contains its initial congestion

window, and the client responds with its maximum buffer

size after receiving the packet. If the sender gets the

acknowledgment from the receiver, the number of packets

to be sent to the receiver is doubled. This procedure

continues until no acknowledgment is received. The ac-

knowledgment may not be received for two reasons: if

congestion occurs or the window limit of the client is

reached.

• Congestion Avoidance Phase- Additive Increase: The

congestion avoidance phase starts when the congestion

window size of the TCP reaches a threshold in the slow

start phase. In this phase, the size of the congestion

window increases linearly. To elaborate, assume the con-

gestion window size at time t is 20 and all the packets

have been transmitted successfully, then the congestion

window size at time t+ 1 will be 21.

• Congestion Detection Phase- Multiplicative Decrease:

If congestion occurs in the slow start phase or con-

gestion avoidance phase, the congestion window size

is decreased. This is called the multiplicative decrease

phase, where TCP follows an exponential reduction of

the congestion window. The additive increase and mul-

tiplicative decrease phases of the congestion avoidance

and detection phases are referred to as Additive Increase

Multiplicative Decrease (AIMD). An example of AIMD

is shown in Figure 3.

Fig. 3. Change in the congestion window in AIMD algorithm when a packet
loss is encountered.

D. Overview of MPTCP

As opposed to TCP, which solely considers one path to

transfer data, MPTCP is a transport layer protocol that allows

the transfer of packets along multiple paths between the sender

and the receiver. This helps the network increase its load

capacity, thereby transferring a larger number of packets com-

pared to TCP. The paths in MPTCP are called subflows. When

one or more of the subflows fails to send a packet, it can flow

through other subflows, leading to a fault-tolerant network.

MPTCP is used in several areas of communication where there

is a need for high throughput and very low latency during

packet transfer. MPTCP is used in different applications such

as online streaming, networking, gaming industries, VPNs.

Figure 4 depicts the use of MPTCP where a cellphone may use

either one of the subflows from two subflows to get connected

to the server: one is the Wifi, and another subflow is the

5G network. The following section explains the procedure for

establishing the MPTCP communication.

Fig. 4. Overview of MPTCP

.

1) Establishment of MPTCP Connection: The establish-

ment of MPTCP between a sender and the receiver has two

stages; In the first step a single flow is established. This phase

is similar to TCP. Then, subsequent subflows are created. In the

first stage, the sender and the receiver use one subflow to set

up the MPTCP connection between them by sharing randomly

generated keys. This lays the foundation for creating further

paths between the sender and the receiver. Figure 5 shows the

establishment of an MPTCP connection using all subflows.

MAISHA MALIHA ET AL.: A SURVEY ON CONGESTION CONTROL AND SCHEDULING FOR MULTIPATH TCP 51



Fig. 5. Establishment of an MPTCP connection.

In MPTCP, after the establishment of the initial handshake

as in TCP, the subsequent subflows are also handshaked [24].

MPTCP follows three-way handshaking consisting of SYN

(synchronize), ACK+SYN and ACK (acknowledge). In the

SYN packet, the sender shares its own token and a random

nonce (number). Here the token is the hash value of the key

using some cryptographic function which can be calculated

in the initial phase with the keys exchanged in that phase.

Subsequently, in the SYN+ACK packet, the receiver creates

an HMAC (Hash-based message authentication code), the

receiver’s token and its nonce.

The option MP CAPABLE is used to check whether the

remote host is MPTCP enabled in the initial subflow. The

option MP JOIN is used in the additional subflow establish-

ment to associate with MPTCP connections. Lastly, the sender

responds with its HMAC in the ACK packet. [24]

E. Overview of Machine Learning Concepts used in Conges-

tion Control in MPTCP

1) RNN and LSTM: RNN (Recurrent Neural Network) is

one kind of neural network that passes the output from the

previous steps to the next steps. RNN consists of the input

layer, hidden layers, and the output layer. Its hidden state

remembers the previous information to predict the next output.

RNN works well in terms of correlation, while LSTM (Long

Short-Term Memory) not only connects the correlation but also

focuses on the context of the information. LSTM is an artificial

neural network that follows feedback connections and stores

previous information to predict the next one. It is a modified

version of the RNN that solves the vanishing gradient problem

[25] and can easily process longer sequences. LSTM has an

input gate, an output gate and a forget gate. The Input Gate

takes an input and vectorizes the input value. The forget Gate

is responsible for forgetting unnecessary information, while

the output gate generates the output. This helps the framework

keep the necessary information and forget the unnecessary

ones. Figure 6 shows the different components of an LSTM

and compares with RNN. The LSTM-based framework is

very popular to create Deep Reinforcement Learning-based

congestion control system for MPTCP [26], [27].

Fig. 6. Architecture of RNN (left) vs LSTM (right).

2) Reinforcement Learning and Deep Q-Learning (DQN):

A Markov model [28] consists of a tuple (s, a, r(s, a)), where

s is the current state vector, a is the vector of actions an agent

takes, and R is the reward or the feedback the environment

provides for the agent, given the current state and action. In

a Markov Decision Process, the agent makes a set of actions,

called policy, to maximize its expected reward. The function

Q(s, a) defines the optimal (i.e., maximum) expected reward

the agent can get, given the current state s and action a.

Evaluating Q is important to plan for the optimal policy. Due

to the stochastic nature of many environments and agents,

calculating the exact value of Q is usually not possible.

Instead, the agent learns Q values from its experience; this

is called Q-learning, a type of reinforcement learning.

DQN Reinforcement Learning (DRL) uses a deep neural

network (DNN) to learn/estimate the Q function. The deep

neural network could be RNN, LSTM, CNN etc. In contrast,

a traditional Q estimation (e.g., Temporal Difference (TD)

learning [29]), is usually a memory table that stores all the pre-

vious records of the different steps that have been taken, along

with their rewards which is not scalable for an environment

with large size of space and actions, or when the action/state

space is continuous. Deep-RL has been used in communication

for learning the communication strategy between multiple

agents. DRL is also used in MPTCP implementation to control

congestion and schedule packets to maximize throughput and

get low latency. In MPTCP communication network, the state

can be throughput, sending rate, RTT, and loss of packets;

actions should be increasing/decreasing congestion window

size and reward is the measurement of either good or bad

performance of the network, based on the state and action.
3) Actor-critic model: An actor-critic has two major com-

ponents: an actor and a critic. An actor takes the state of the

current environment and determines the best action that needs

to be taken, depending on that state. Whereas the critic works

52 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



for the evaluation role by taking the environment state with

actions and returning a score/reward (e.g., Q) to decide how

good is that action for that state. Determining the best action

depends on the Q score, which is calculated separately in the

critic network. An actor-critic learning technique learns both

a policy function and a value function at the same time. The

value function aids in enhancing the value function’s training

procedures, while the policy function instructs on how to make

decisions.

4) Transformers and Self-Attention: The transformer is an

encoder-decoder model and has been used in many applica-

tions [30]. Self attention follows the encoder part of transform-

ers and can be used in many communication applications such

as congestion control [27], or scheduling packets for MPTCP.

In natural language processing or machine translation, self-

attention for a particular word measures the dependency of

that word on the other words; more relevant words have a

higher value in self-attention, and loosely connected words

have lower values [31], [32]. This concept is brought into

the area of communication and subflows. Here the words

have been replaced by the subflows. In MPTCP, self-attention

checks the dependency of a subflow with the other subflows by

assigning different weights to the states of the other subflows.

Here the states of the subflows may refer as RTT, packet loss,

packet delay, and throughput [27].

III. TRADITIONAL TCP VS MULTIPATH TCP

In this section, we discuss some major challenges in net-

work communication, how MPTCP and TCP address them in

different situations, including the comparison of MPTCP and

TCP performance.

A. Packet Loss

Packet loss happens in a network when a packet fails

to reach the receiver. Packet loss in a network indicates

network congestion, disruption, or even a complete loss of

connection. When a TCP connection encounters a packet loss,

it considers a sign of network congestion and, therefore, halves

the size of the congestion window and the threshold value;

hence the throughput decreases. However, MPTCP is more

robust in such cases; whenever it sees one of the subflows

having packet loss, it reduces the congestion window of that

subflow, while the other subflows remain intact. This was

experimentally tested [33] where TCP and MPTCP transmis-

sion performances were compared using WiFi and LTE. In

this real-world experiment, 750 individuals from 16 nations

utilized a crowd-sourced smartphone application for 180 days.

Deng et al. [33] compared MPTCP and TCP performance via

WiFi or LTE from 20 different places across seven cities in

the United States. The fastest link of normal TCP exceeds

MPTCP performance for short flows. In this scenario, MPTCP

fails to select an appropriate communication path to reduce

transmission time for a small amount of data; hence, the packet

loss increases for MPTCP. However, TCP experiences greater

packet loss than MPTCP in log-distance communication ex-

periments.

B. Packet Delay

Packet delay in a network is the time taken to transfer

a packet of data from sender to receiver. The packet delay

is highly affected by the number of routers or switches in

the route, the nature of the path the packet follows, and the

congestion in that path. The vulnerability of packet delay

in both TCP and MPTCP scenarios can be described by

one communication example. If a computer is connected via

both wireless and wired connections, it may communicate

with servers using TCP or MPTCP. In terms of TCP, if

the connection is established over the wireless connection,

it will have a greater overall delay than MPTCP. Wireless

connection experiences high packet loss as opposed to the

wired connection which leads to higher latency [34].

MPTCP has the choice to choose either a wired or wire-

less connection, it may transfer the packets via the wired

connection if it experiences major packet delay through a

wireless connection. Raiciu et al. [35] have compared the

performance of MPTCP and TCP-based on the packet delays

in different network topologies. Their findings reveal that

MPTCP can achieve 90 percent bandwidth utilization and low

overall packet delay when the number of subflows is two and

eight in the VL2 [36] and FatTree network [37] topologies,

respectively. The result also showed that MPTCP not only

increases the bandwidth but also increases the robustness to

network changes by lowering the packet delay.

C. Out-of-Order Packets

In TCP, a message is divided into multiple parts, known

as packets. Each of these packets is given a unique number

known as the sequence number. When these packets reach the

receiver, it uses the sequence number to put them in order

to retrieve the message. If these orders are not maintained

during transmission, the delivery is called out-of-order delivery

of packets. UDP is notorious for these deliveries as it does

not consider any handshaking when each packet is received.

But in TCP, the next packet is not sent until it gets the

acknowledgment from the previous packet. If it gets a time

out or negative acknowledgement (NACK) [38], the packets

are sent again; therefore, out-of-order delivery is rare in TCP.

However, in MPTCP, there is a high chance of out-of-order

delivery of packets as they use different subflows with different

delays. Therefore, scheduling is one of the most challenging

tasks in MPTCP, and a lot of work has been done to address

this issue. Yang et al. [39] have mentioned a situation where

the jitter can happen for transferring data in MPTCP. They

tackled this issue using an innovative traditional scheduling

process named Delay Aware Packet Scheduling technique to

remove the jitter in the packets. Han et al. [17] used a queue

to keep redundant packets that may get lost.

D. Round Trip Time

Round Trip Time (RTT) has been discussed in section II.

Chen et al. [40] have compared the performances of TCP and

MPTCP over WiFi and cellular networks where the authors

MAISHA MALIHA ET AL.: A SURVEY ON CONGESTION CONTROL AND SCHEDULING FOR MULTIPATH TCP 53



compared the RTTs of the transmission protocols. They con-

ducted two sets of experiments; in the first experiment, they

used small-sized files, and in the second, large-sized files were

used. In the first experiment, the file size varied from 8KB to

32MB. When WiFi is the default route, there is no discernible

gain in MPTCP download performance over TCP. For small

file downloads (such as 64 KB), the single route via WiFi

delivers the optimum speed. However, a single LTE (Long-

Term Evolution) 1 channel becomes the optimum option for

relatively longer traffic flows. MPTCP outperforms TCP for

larger files.

IV. CONGESTION CONTROL OF MPTCP

Congestion control is a concept of controlling congestion

in a network and could happen in both TCP and MPTCP.

Congestion occurs when there is too much data that needs to

be sent through a network. Congestion control regulates the

flow of data packets into the network, allowing for efficient use

of a shared network infrastructure and preventing congestion

collapse. In TCP, where there is only one subflow, the network

is easily congested.

Different types of algorithms have been proposed to improve

the congestion in TCP networks, such as TCP Cubic [41],

TCP Vegas [42], and TCP Reno [42]. MPTCP provides several

subflows, which results in a reduction of congestion. MPTCP

has been designed to address the congestion issue, while

still having the traffic flowing like a single-path TCP. A

naive implementation of CC in a multipath setting would

be using regular TCP congestion control for each subflow;

however, it is not efficient as MPTCP which uses multiple

concurrent TCP connections. Having a congestion control that

manages the packet flows on subflows concurrently seems

more efficient. For this purpose, many methods have been pro-

posed to improve congestion in MPTCP. Congestion control

algorithms for MPTCP are classified as classical and machine

learning approaches which will be discussed in the following

subsections.

A. Classical Congestion Control Approaches

Most of the existing congestion control algorithms in

MPTCP setting focus on the Congestion-Avoidance (CA)

phase that solely considers long flow transmissions and does

not focus much on the slow start phase. The congestion

avoidance phase prevents a network from being overflooded

by data such that it discards packets with low priority to

be delivered, and the rate of transmission rises linearly over

time. Another approach is to focus on Slow Start. The Slow

Start phase limits the quantity of data to be sent over a

network to avoid congestion. However, it causes exponential

growth of the congestion window in the uncoupled Slow-Start

(SS) phase, leading to buffer overflow from burst data. In

terms of solving the mentioned problems, Yang et al. [43]

have proposed a Throughput Consistency Congestion Control

(TCCC) algorithm which consists of both Coupled Slow-

Start (CSS) and Aggressive Congestion Avoidance (ACA).

1wireless broadband communication standard came before 4G network

The usage of CSS prevents packet loss brought on by large

data bursts and ACA works on getting fair bandwidth which

is shared in congestion avoidance. Their proposed framework

enhances transmission efficiency. However, the CSS algorithm

only plays a part in the initial slow start phase of MPTCP.

As the subflows of MPTCP belong to different phases in

congestion control (see Section II-C), the CSS algorithm needs

much extra consideration, which makes congestion control

more challenging in MPTCP [43].

Traditional AIMD used in TCP shows poor performance

adaptation in terms of network state-changing situations in

MPTCP. Gilad et al. [44], have presented a method named

MPCC that uses online learning. Their implementation has

been performed in Linux kernel and the method has been

tested on different network conditions and many different

network topologies. In terms of improving the implementa-

tion, their analysis needs to be reached beyond parallel link

networks. As further research, they have mentioned about

boosting the performance for short flows and solving the

bandwidth mismatch problems on network paths.

An energy-aware based congestion control algorithm

(ecMTCP) has been developed by Le et al. [12] where the

method distributes traffic between the most crowded and least

crowded paths, as well as across paths with different energy

costs, to achieve load balancing and energy savings. For

simulation purposes, they used NS-2 simulator [45], and their

design mechanisms can work on getting higher throughput in

terms of both TCP and MPTCP flows. The main goal was

to shift the traffic to less energy-intensive and less crowded

paths. Cao et al. [13] proposed weighted Vegas (wVegas),

a delay-based congestion control scheme for MPTCP. This

algorithm has detected the packet queuing delay of each path

and ultimately has decreased the packet load of congested

subflows by increasing the load of the less congested one.

This framework performed traffic shifting which can cause less

packet losses and provide better traffic balance in subflows.

Cao et al. used NS-3 simulator [46] to conduct the simulation

and build a Network Utility Maximization Model by proposing

an approximate iterative algorithm to reach their aim of

controlling congestion.

Ji et. al [14] mentioned that existing multipath congestion

control algorithms are unable to quickly adjust to dynamic

traffic due to the heterogeneous Quality of Service (QoS). QoS

refers the technologies that work on a network to manage traf-

fic and enhance performance by reducing packet loss, delay,

and latency in a network. It may lead to poor performance

in certain network environments. To mitigate these issues,

firstly, the authors have noticed the performance constraints

of the most recent multipath congestion control algorithms

through vast experimentation. Then, they used a unique control

policy optimization phase referred to an adaptive QoS-aware

multipath congestion management system that can quickly

adapt to network changes. Their method uses the Random

Forest Regressing (RFR) [47] method to carry out QoS-

specific utility function optimization to adapt and encourage

the improvement of the selected performance metric. They

54 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



conducted the implementation in Linux kernel and showed

their work outperformed most of the multipath congestion

control methods such as wVegas [13], Opportunistic Linked

Increases Algorithm (OLIA) [9], Balanced Linked Adaptation

(BALIA) [10].

Singh et al. [48] improved the Opportunistic Linked In-

creases Algorithm [9] and Dynamic-Window Coupling (DWC)

[8]. The authors provided a mechanism to reduce the overall

packet reordering delay and focused on the buffer size in the

receiver side. Their proposed work showed good performance

in terms of various bottleneck scenarios.

Hassayoun et al. [8] proposed a multipath congestion control

scheme called Dynamic-Window Coupling (DWC) to obtain

higher throughput to each end-to-end multiple paths. The

authors also detected shared bottlenecks by monitoring loss

and delay signals, and then grouped their congestion control

mechanism over all subflows that shared a common bottle-

neck. Detecting the bottleneck for network conditions and

regrouping the subflows in terms of the same bottlenecks leads

to higher throughput. They also introduced subflow sets, a

concept for enabling subflows to smoothly switch between

independent and shared bottleneck-based congestion control.

The algorithm has been implemented in NS-2 simulator.

As future research, the authors introduced the possibility of

including ”memory” into the detection method for detecting

the previous subflow groupings.

Ferlin et al. [49] have mentioned that increasing the band-

width of multiple links and getting higher throughput will be

impossible if two or more paths do not share a bottleneck.

They found out the nonshared bottleneck paths of the coupled

congestion control for links, they referred to it as a penalty,

and to overcome it, they implemented shared bottleneck de-

tection (SBD) algorithm for MPTCP. This work can balance

congestion and throughput. Their observation has shown that

in the case of non-shared bottleneck scenario, the maximum

throughput can be achieved up to 40% with two subflows.

Also, the throughput gain increased by above 100% when the

number of subflows increased to five. Their implementation

has been performed in Linux kernel and for emulation pur-

poses, they have also used CORE network emulator [50].

B. Machine Learning Approaches for Congestion Control in

MPTCP

Though lots of work have been done in classical-based ap-

proaches for congestion control of MPTCP. But for controlling

congestion, classical-based approaches focus solely on differ-

ent types of congestion indicators (i.e., packet loss or RTT).

In the case of classical-based approaches, the decision-making

process totally depends on these unpredictable factors, which

leads to poor performance. Whereas ML-based approaches aim

to provide decisions based on experience, and can adapt well to

any network situation. Thus, ML-based approaches outperform

classical-based methods [51].

In reality, networks are dynamic, and the state of the net-

work changes frequently. Due to that, MPTCP performs poorly

in many practical situations as MPTCP has to adapt in new

network states. Zhuang et al. [52], introduced a Reinforcement

Learning technology that can learn the best route to send

TCP packets such that the throughput has been maximized.

They proposed a simple algorithm for controlling multipath

congestion, where congestion control has been approached as

a multi-armed bandit [53] issue based on online learning (MP-

OL), which allowed flexible and adaptive transmission rate

adjustments for each subflow with good performance.

In [26], the authors proposed a Deep Reinforcement Learn-

ing (DRL)-based framework to control congestion where a sin-

gle DRL agent has been utilized to perform congestion control

for all MPTCP flows to maximize the total utility. Figure 7

illustrates the concept of DRL for MPTCP congestion control.

They implemented the MPTCP in the Linux kernel and used

an LSTM-based neural network under a DRL framework to

develop a representation for all active flows. Their work was

the first work where the authors incorporated the LSTM-

based representation network into an actor-critic architecture

for controlling congestion which used the deterministic policy

gradient [54] to train the critic, actor, and LSTM networks.

He et al. [27] worked on increasing/decreasing the sending

rates of packets in response to congestion, where each DRL

agent can control the congestion window size of each subflow.

Their proposed DRL-based MPTCP framework also included

self-attention, which has been used to check the dependencies

of one subflow with the weighted sum of other subflows. They

compared their work with DRL-CC [26] and showed their

method outperforms DRL-CC.

Fig. 7. Subflows are controlled by a DRL agent.

Li et al. [55] proposed a method called SmartCC which can

learn a set of congestion rules for observing the environments

and taking actions to adjust the congestion window size of

each subflow. For the MPTCP implementation task, the authors

used the NS-3 simulator.

The Internet of Deep Space Things, or IoDST, offered

MAISHA MALIHA ET AL.: A SURVEY ON CONGESTION CONTROL AND SCHEDULING FOR MULTIPATH TCP 55



communication services for mission spacecraft that send video

data. To improve TCP throughput and stream playback, Ha et

al. [15] designed a congestion control framework for MPTCP,

which can be used for data streaming transmission. Their

proposed Q-learning and Deep Q-Network (DQN)-based con-

gestion control scheme calculated the ideal congestion window

for data transfer in IoDST conversations.

Xu et al. [56] proposed the SGIN-based High-Speed Rail-

way (HSR) scenario with MPTCP. Space-ground integrated

networks (SGINs) has been referred to as promising network

architecture that provides seamless, high-rate, and reliable

data transmission with incredibly wide coverage. By utilizing

MPTCP in the SGIN, simultaneous data transfer over terres-

trial and satellite networks has been made possible. However,

due to MPTCP’s current congestion control (CC) mechanisms,

it’s difficult to know the difference between negative effects

(like packet loss and/or increased round-trip time) brought

on by congestion and those brought on by handovers. This

may lead to severe performance degradation in the SGIN-

based HSR scenario, where handover may occur frequently.

To solve it, a DRL-based novel approach has been proposed

to improve the goodput which outperformed other state-of-the-

art algorithms.

Xu et al. [57] presented a DRL-based novel framework for

traffic engineering that can make decisions under the guidance

of actor-critic networks. In their work, the state consisted of

two components, such as the throughput and the delay of each

communication session. On the other hand, the action has been

defined as the solution to Traffic Engineering (TE) problems.

The authors used the NS-3 simulator, and the reward of the

model was the sum of the output from the utility function for

an entire communication session. The utility function was a

function of the throughput and delay of the network, which

depicted how the network can perform. In the paper, each

session had 20 iterations. In each iteration, the agent sent

its actions to the environment and recorded the value from

the utility function before updating the reward value. While

they considered only one DRL agent (i.e., decision maker) in

their framework, adding multiple agents can be considered to

further improve the performance.

Pokhrel et al. [58] introduced a transfer learning-based

MPTCP framework for Industrial IoT, where the neighboring

machines can collaborate to learn from each other. In their

approach, when a new DRL system controlling the IoT net-

work joins the environment, it can use the idea of transfer

learning. 2 NS-3 was used to simulate the algorithm. Their

model has been proven theoretically and needs further research

to determine its performance in a real-world situation.

V. SCHEDULING OF MPTCP

Scheduling of MPTCP decides the amount of data that needs

to be scheduled to different subflows based on getting the

higher performance (high throughput, low latency, less packet

2Transfer learning uses a previously trained model as the foundation for a
new model on a different task.

loss) in MPTCP. In this section, different classical and ML-

based approaches have been discussed which can be used to

schedule packets in MPTCP.

A. Classical Approaches for Scheduling in MPTCP

Hwang et al. [59] dealt with the problem of scheduling

small-length packets. However, the authors mentioned MPTCP

is usually advantageous for long-lived flows, and it performs

worse than single-path TCP when the flow size is tiny (e.g.,

hundreds of KiloBytes). In this scenario, the quickest method

is preferable since latency is far more critical than network

bandwidth with such tiny data deliveries. The regular MPTCP

packet scheduler may pick a slow path if the fast path’s

congestion window is unavailable, resulting in a delayed flow

completion time.

To address this issue, Hwang et al. [59] suggested a novel

MPTCP packet scheduler that momentarily blocks the slow

path when the latency difference between the slow and fast

paths is considerable, allowing the tiny quantity of data to be

delivered swiftly via the fast path. The authors used the method

to find the subflow with the lowest RTT regardless of the

availability of the congestion window, and then they used the

existing Lowest-RTT-First policy [60] to choose the optimal

subflow. They then returned the best one if the difference

between the best subflow RTT and the minimum RTT is less

than a certain threshold. They picked 100ms for threshold

delay when testing 3G and WiFi networks in this paper.

Chaturvedi et al. [11] analyzed different existing schedulers

and identified some current outstanding concerns, such as

head-of-line (HoL) blocking and out-of-order packet delivery.

HoL blocking may occur when a single data packets queue

may wait to be transmitted and the packet at the head of

the line may not be able to move ahead due to congestion

[61]. These problems reduce MPTCP performance and to

mitigate the issues, the authors have presented an adaptive

and efficient packet scheduler (AEPS). This novel MPTCP

packet scheduler not only addresses these concerns but also

offers high throughput with a short completion time by using

the capacity of all available pathways. AEPS can send data

packets to the receiver in the order they were received, and its

performance is unaffected by the size of the receiver buffer,

or the size of the data being transmitted. The AEPS has been

developed with three objectives: (1) packets should arrive to

the receiver buffer; (2) all pathways’ bandwidth should be

used; and (3) completion time should be as short as possible.

According to the authors, the first condition assisted AEPS

in resolving the HoL blocking and received window-limiting

issues by sending packets to the receiver buffer in sequence.

The second condition summed the bandwidth of each interface

(path) by using all accessible pathways to the MPTCP source,

which also helped to enhance throughput. The third criterion

aided in choosing the routing for each packet so that the total

network completion time can be minimized.

Dong et al. [62] thoroughly compared existing scheduling

algorithms and guided the development of new scheduling al-

gorithms in 5G. The authors examined the influence of several

56 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



network parameters, such as RTT, buffer size, and file size, on

the performance of current extensively used scheduling algo-

rithms over a wide range of network circumstances. The pa-

per compares the Lowest-RTT-First [60], Delay-aware packet

scheduler (DAPS) [63], Out-of-order transmission for in-order

arrival scheduler (OTIAS) [64] and Blocking estimation-based

MPTCP scheduler (BLEST) scheduling [65] algorithms. The

number of timeouts and flow completion time are compared in

the path heterogeneity test. The results showed Lowest-RTT-

First has the most timeouts, while the BLEST has the fewest.

BLEST surpasses other algorithms in varying buffer size

outcomes, followed by OTIAS and DAPS. Since BLEST can

dynamically predict whether head-of-line blocking will occur

and hence minimizes the quantity of out-of-order packets. In

the different file size tests, BLEST and LowRTT perform

better than DAPS, and OTIAS outperforms BLEST.

Le et al. [66] tackled the problem of out-of-order delivery

in MPTCP. Because of the diverse nature of latency and

bandwidth on each channel, the out-of-order packet issue

becomes severe for MPTCP. To solve this issue, the authors

presented the forward-delay-based packet scheduling (FDPS)

method for MPTCP. The technique is divided into two parts:

predicting the forward delay differences across pathways and

picking data to send through a path when the congestion

window is available.

B. Machine Learning Approaches for scheduling in MPTCP

In recent times, many ML-based approaches have been

proposed to improve the scheduling mechanism of MPTCP.

Though classical approaches achieve good performance in

terms of scheduling in MPTCP, ML-based approaches also

show promising result and becomes popular in terms of getting

higher throughput with lower latency than non-ML methods.

Wu et al. [16] applied a learning-based technique to sched-

ule packets in the different paths of an MPTCP. The authors

have presented FALCON, a learning-based multipath sched-

uler that can adapt to changing network circumstances quickly

and correctly using meta-learning. The meta-learning algo-

rithm comprises two parts: offline training and online train-

ing parts. The online learning module captures the network-

changing conditions whereas the offline learning module takes

the experience(data) from the online module and divides the

experience into different groups depending on the network

conditions.

Han et al. [17] used the technique of redundancy of pack-

ets to reduce packet loss by suggesting EdAR (Experience-

driven Adaptive Redundant packet scheduler). In the face of

dramatic network environment changes, EdAR enables dy-

namically scheduling redundant packets using an experience-

driven learning-based strategy for multipath performance en-

hancement. To allow accurate learning and prediction, a Deep

Reinforcement Learning (DRL) agent-based framework has

been created that learns both the network environment and the

optimal course of action. EdAR has two transmission modes:

standard transmission and redundant transmission. Standard

transmission follows the regular data transition. Regarding the

redundancy transmission, there is a buffer called redundant

buffer. The redundant buffer holds packets that have already

been transmitted but have yet to be acknowledged. If a new

packet is transmitted from the send buffer on a subflow, it is

copied to the redundant buffer. If a packet in the redundant

buffer is not sent out or acknowledged, it is deleted from

the redundant buffer. Silva et al. [67], used linear regression

[68] to predict throughput and latency in MPTCP subflows,

and proposed Artificial Neural Network [69]-based linear

classifier to choose the best subflow which can provide better

performance in MPTCP scheduler. They implemented their

work in NS-3 simulator.

VI. CONGESTION CONTROL AND SCHEDULING OF

MPTCP

Few works have been done focusing on congestion control

and scheduling the packets of MPTCP at the same time. Those

works get higher throughput and lower latency in terms of

performance evaluation. Though further research regarding

congestion control with packet scheduling is needed to be

done. This section reviews classical and machine learning

approaches that have been done in this domain.

A. Classical Approaches on both Congestion Control and

Scheduling of MPTCP

Wei et al. [23] proposed a model that gets higher throughput

when the networks do not go through a shared bottleneck.

Their work had two outcomes: (1) When no congestion would

occur, their method has been able to get higher throughput

than a single TCP. (2) When there is congestion in the

network, their method has at least the same throughput as

TCP. Their method also measured how severe or minor the

congestion is in the network. They have introduced both SB-

CC (Shared Bottleneck-based Congestion Control Scheme)

and SB-FPS (Shared Bottleneck-based Forward Prediction

packet Scheduling scheme), where SB-CC can detect shared

bottlenecks and estimate the congestion degree of all subflows.

SB-FPS can perfectly schedule data in shared bottleneck and

can also distribute data according to the congestion window

size of each subflows. For implementing MPTCP, they used

the Linux kernel and achieved higher throughput.

B. Machine Learning Approaches on both Congestion Control

and Scheduling of MPTCP

Pokhrel et al. [71] have introduced the Deep Q learn-

ing (DQL)-based method to control congestion and schedule

packets for MPTCP. Their proposed DQL framework has

utilized the LSTM-based recurrent neural network where in

their framework the Q function provided the logarithm value

of goodput for the previous iteration. Here, the policy function

was the actor-critic of two LSTMs and the value function was

the reward. They considered RTT, throughput, and sending

rate as the state. Depending on the state, their model provided

action on whether window size needed to be increased or

decreased and what changes can be taken in the schedule of

packets for the subflows. In their work, the reward was the

MAISHA MALIHA ET AL.: A SURVEY ON CONGESTION CONTROL AND SCHEDULING FOR MULTIPATH TCP 57



TABLE I
PERFORMANCE MEASUREMENT OF REVIEWED PAPERS FOR CONGESTION CONTROL AND PACKET SCHEDULING IN MPTCP.

Approaches Paper Feature Strength Limitations Implementation

ML

DeepCC [27] Congestion increasing/decreasing the increased computational Linux Kernel
Control sending rates of packets time

DRL-CC [26] Congestion high throughput complexity by Linux Kernel
Control large state space

SmartCC [55] Congestion dealt with multiple communication did not consider NS-3
Control path in heterogeneous networks TCP-friendliness

issues
IoDST [15] Congestion calculated the ideal congestion window did not use real computer

Control experiments or simulations
emulated tests

DRL for Congestion higher goodput than other state-of-the-art
Handover-Aware Control algorithms training time Linux Kernel
MPTCP CC [56] becomes longer
MPTCP Meets Congestion improved the efficiency of newly deployed not proven in NS-3

Transfer Control & machines practical situations
Learning [58] Packet

Scheduling

FALCON [16] Packet can adapt in network changing conditions needs to understand Multipath
Scheduling the learning outcome QUIC [70]

EDAR [17] Packet enabled dynamically scheduling redundant increased NS-3
Scheduling packets computational

time

Classical

TCCC [43] Congestion improved efficiency in nonshared needs extra NS-3
Control bottleneck scenario consideration for and Linux kernel

different phases
of MPTCP

MPCC [44] Congestion tested on different network conditions bandwidth mismatch Linux kernel
Control problems on

network paths
ACCeSS [14] Congestion quickly adjust to dynamic traffic performance can be Linux kernel

Control improved
CC MPTCP with Congestion balancing congestion with improving the needs to improve Linux kernel and
shared bottleneck Control throughput it’s robustness CORE

detection [49]
Packet scheduling Packet decreased the completion time of short needs to improve Linux kernel

for multipath TCP [59] Scheduling flows overall transmission
rate

AEPS [11] Packet high throughput and low completion performed poorly Linux kernel
Scheduling time in heterogeneous and NS-3

networks
wVegas [13] Congestion less packet losses needs to effectively NS-3

Control handle multiple
extended high-speed

paths
DWC for Congestion high throughput did not mention their NS-2

MPTCP-CC [8] Control model performed
better than others

summation of all the Q functions for all subflows. Similar

to other RL algorithms, the optimal decision was learned to

maximize the reward. They have made their MPTCP imple-

mentation in the Linux kernel and achieved low delays with

maximum goodput.

VII. IMPLEMENTATION OF MPTCP

In this section, we describe different ways of implementing

MPTCP either in real hardware (kernel) or in simulator and

list some of the works for each type of implementation as the

reader’s reference. Previously, NS-2 simulator has been used

for implementing MPTCP [8], [72]. Now, most of the recent

works have focused on implementing MPTCP in the Linux

kernel after enabling MPTCP in the operating system or using

the NS-3 simulator. Very few works implemented MPTCP on

the CORE emulator.

A. Simulation

Chihani et al. [73] implemented MPTCP in the NS-3

simulator and introduced a new protocol that worked better in

various network conditions. They compared different packet

reordering systems and analyzed that their implementations

will be necessary for further MPTCP performance analysis in

terms of controlling congestion. Nadeem et al. [74] worked

on introducing three path managers; default, ndiffports, and

fullmesh to create an MPTCP patch for implementing MPTCP

in the NS-3 development version. While the default patch

has not made any new subflows, fullmesh made a mesh of

58 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



whole new subflows towards the feasible pairs of IP addresses;

ndiffports introduced subflows in between the same IP pair

with the help of distinct source and destination. It showed

better results in terms of getting higher throughput and less

flow completion time than prior works. Coudron et al. [75]

proposed MPTCP implementations in NS-3 to handle network

traffic. They also compared their algorithm with previous work

implemented in NS-3 and Kernel. Table I lists some other

MPTCP implementations in NS-2, NS-3 and CORE simulator

with the aim of congestion control or schedule packets or

perform both congestion control and packet scheduling for

MPTCP.

B. Real Hardware (kernel)

Network simulators sometimes fail to depict the original

network conditions, as the real-world network is highly dy-

namic; the breaking of links and the creation of new links

are spontaneous. Therefore, the evaluation of MPTCP on real-

world networks using Linux kernels shows a much bigger

picture of its strengths and weaknesses. In the work [76],

the authors have implemented MPTCP in a Linux kernel to

study if each subflow has a different scheduler and then how

the different subflows of an MPTCP may dispute bottleneck

links with conventional single-path TCP. They tested LIA,

OLIA, BALIA and wVegas on Linux kernel implementation

of MPTCP and evaluated the throughput, latency, etc., on real-

world networks. Zannettou et al. [24] used the kernel imple-

mentation of MPTCP to show their MPTCP-aware scheduling

performs better than random hashing of packets to subflows

which is generally used. They used the FatTree [77] and

Jellyfish [78] topologies to conduct their experiments. FatTree

is a highly structured topology used in data centers to obtain

the highest throughput cost-effectively, while Jellyfish is the

most commonly used randomly structured topology which can

support more hosts than the FatTree, while keeping almost

the same throughput. The commercial application for MPTCP

support is available online [79].

VIII. CONCLUSION

This paper focuses on two crucial concepts in MPTCP -

congestion control and scheduling. The study shows how the

most recent works fulfill the previous work gaps and mitigate

the above two MPTCP issues using different classical and ML-

based approaches. Our study also presents the advantages and

limitations of current works and encourages the researchers

to continue further improvements in this domain. As in every

communication sector MPTCP establishes a tremendous role,

it is necessary to improve the performance of MPTCP, and our

paper can be beneficial for the readers to have an extensive

knowledge of MPTCP performance issues and can use it for

proposing new algorithms.

REFERENCES

[1] L. G. Roberts, “The evolution of packet switching,” Proceedings of the

IEEE, vol. 66, no. 11, pp. 1307–1313, 1978.
[2] M. Hauben, “History of ARPANET,” Site de l’Instituto Superior de

Engenharia do Porto, vol. 17, pp. 1–20, 2007.

[3] J. Postel, “Rfc0768: User Datagram Protocol,” 1980.

[4] J. Postel, “Transmission Control Protocol,” tech. rep., Information Sci-
ences Institute, University of Southern California, 1981.

[5] S. H. Baidya and R. Prakash, “Improving the performance of multipath
TCP over heterogeneous paths using slow path adaptation,” in 2014

IEEE International Conference on Communications (ICC), pp. 3222–
3227, IEEE, 2014.

[6] G. Huston, “TCP in a wireless world,” IEEE Internet Computing, vol. 5,
no. 2, pp. 82–84, 2001.

[7] L. Chao, C. Wu, T. Yoshinaga, W. Bao, and Y. Ji, “A brief review of
multipath TCP for vehicular networks,” Sensors, vol. 21, no. 8, p. 2793,
2021.

[8] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling
for multipath congestion control,” in 2011 19th IEEE International

Conference on Network Protocols, pp. 341–352, IEEE, 2011.

[9] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: Performance issues and a possible solution,” IEEE/ACM

Transactions On Networking, vol. 21, no. 5, pp. 1651–1665, 2013.

[10] A. Walid, Q. Peng, J. Hwang, and S. Low, “Balanced linked adaptation
congestion control algorithm for MPTCP,” Internet Engineering Task

Force, Internet-Draft draft-walid-mptcp-congestion-control-04, 2016.

[11] R. K. Chaturvedi and S. Chand, “An adaptive and efficient packet sched-
uler for multipath TCP,” Iranian Journal of Science and Technology,

Transactions of Electrical Engineering, vol. 45, pp. 349–365, 2021.

[12] T. A. Le, C. S. Hong, M. A. Razzaque, S. Lee, and H. Jung, “ecMTCP:
An energy-aware congestion control algorithm for multipath TCP,” IEEE

Communications Letters, vol. 16, no. 2, pp. 275–277, 2011.

[13] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for mul-
tipath TCP,” in 2012 20th IEEE International Conference on Network

Protocols (ICNP), pp. 1–10, IEEE, 2012.

[14] X. Ji, B. Han, R. Li, C. Xu, Y. Li, and J. Su, “ACCeSS: adaptive
QoS-aware congestion control for multipath TCP,” in 2022 IEEE/ACM

30th International Symposium on Quality of Service (IWQoS), pp. 1–10,
IEEE, 2022.

[15] T. Ha, A. Masood, W. Na, and S. Cho, “Intelligent multi-path TCP
congestion control for video streaming in internet of deep space things
communication,” ICT Express, 2023.

[16] H. Wu, O. Alay, A. Brunstrom, G. Caso, and S. Ferlin, “Falcon: Fast
and accurate multipath scheduling using offline and online learning,”
arXiv preprint arXiv:2201.08969, 2022.

[17] J. Han, K. Xue, J. Li, R. Zhuang, R. Li, R. Yu, G. Xue, and Q. Sun,
“EdAR: An experience-driven multipath scheduler for seamless handoff
in mobile networks,” IEEE Transactions on Wireless Communications,
2023.

[18] S. J. Siddiqi, F. Naeem, S. Khan, K. S. Khan, and M. Tariq, “Towards
AI-enabled traffic management in multipath TCP: A survey,” Computer

Communications, vol. 181, pp. 412–427, 2022.

[19] M. Y. Asiri, “A survey of multipath TCP scheduling schemes: Open
challenges and potential enablers.” https://www.techrxiv.org/, 2021.

[20] P. Tomar, G. Kumar, L. P. Verma, V. K. Sharma, D. Kanellopoulos,
S. S. Rawat, and Y. Alotaibi, “CMT-SCTP and MPTCP multipath
transport protocols: A comprehensive review,” Electronics, vol. 11,
no. 15, p. 2384, 2022.

[21] C. Xu, J. Zhao, and G.-M. Muntean, “Congestion control design for
multipath transport protocols: A survey,” IEEE communications Surveys

& Tutorials, vol. 18, no. 4, pp. 2948–2969, 2016.

[22] A. Jasin, R. Alsaqour, M. S. Abdelhaq, O. Alsukour, and R. Saeed,
“Review on current transport layer protocols for TCP/IP model,” Inter-

national Journal of Digital Content Technology and its Applications,
vol. 6, no. 14, pp. 495–503, 2012.

[23] W. Wei, K. Xue, J. Han, D. S. Wei, and P. Hong, “Shared bottleneck-
based congestion control and packet scheduling for multipath TCP,”
IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 653–666,
2020.

[24] S. Zannettou, M. Sirivianos, and F. Papadopoulos, “Exploiting path
diversity in datacenters using MPTCP-aware SDN,” in 2016 IEEE

Symposium on Computers and Communication (ISCC), pp. 539–546,
IEEE, 2016.

[25] S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116,
1998.

[26] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path TCP meets deep reinforcement

MAISHA MALIHA ET AL.: A SURVEY ON CONGESTION CONTROL AND SCHEDULING FOR MULTIPATH TCP 59



learning,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1325–1336, 2019.

[27] B. He, J. Wang, Q. Qi, H. Sun, J. Liao, C. Du, X. Yang, and Z. Han,
“DeepCC: Multi-agent deep reinforcement learning congestion control
for multi-path TCP based on self-attention,” IEEE Transactions on

Network and Service Management, vol. 18, no. 4, pp. 4770–4788, 2021.

[28] M. L. Puterman, “Markov decision processes,” Handbooks in Operations

Research and Management Science, vol. 2, pp. 331–434, 1990.

[29] G. Tesauro et al., “Temporal difference learning and TD-Gammon,”
Communications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[30] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” AI

Open, 2022.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

Neural Information Processing Systems, vol. 30, 2017.

[32] V. Pramanik and M. Maliha, “Analyzing sentiment towards a product
using DistilBERT and LSTM,” in 2022 International Conference on

Computing, Communication, and Intelligent Systems (ICCCIS), pp. 811–
816, IEEE, 2022.

[33] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “WiFi, LTE,
or both? Measuring multi-homed wireless internet performance,” in Pro-

ceedings of the 2014 Conference on Internet Measurement Conference,
pp. 181–194, 2014.

[34] S. Singh, P. Mudgal, P. Chaudhary, and A. K. Tripathi, “Comparative
analysis of packet loss in extended wired LAN environment,” Interna-

tional Journal of Computer Applications, vol. 117, no. 2, 2015.

[35] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 266–277, 2011.

[36] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” in Proceedings of the ACM SIGCOMM 2009

Conference on Data Communication, pp. 51–62, 2009.

[37] “Fat-Tree Design.” https://clusterdesign.org/fat-trees/. [Accessed 19-Jul-
2023].

[38] K. T. Hanna and P. Loshin, “NACK (NAK, negative acknowledgment,
not acknowledged),” TechTarget, Aug 2021.

[39] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in 2014 28th International

Conference on Advanced Information Networking and Applications

Workshops, pp. 749–752, IEEE, 2014.

[40] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of multipath TCP performance
over wireless networks,” in Proceedings of the 2013 cConference on

Internet Measurement Conference, pp. 455–468, 2013.

[41] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 64–74, 2008.

[42] O. Ait-Hellal and E. Altman, “Analysis of TCP vegas and TCP reno,”
Telecommunication Systems, vol. 15, no. 3-4, pp. 381–404, 2000.

[43] J. Yang, J. Han, K. Xue, Y. Wang, J. Li, Y. Xing, H. Yue, and D. S.
Wei, “TCCC: a throughput consistency congestion control algorithm
for MPTCP in mixed transmission of long and short flows,” IEEE

Transactions on Network and Service Management, 2023.

[44] T. Gilad, N. Rozen-Schiff, P. B. Godfrey, C. Raiciu, and M. Schapira,
“MPCC: Online learning multipath transport,” in Proceedings of the

16th International Conference on Emerging Networking EXperiments

and Technologies, pp. 121–135, 2020.

[45] M. H. Rehmani and Y. Saleem, “Network simulator NS-2,” in Encyclo-

pedia of Information Science and Technology, Third Edition, pp. 6249–
6258, IGI Global, 2015.

[46] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the NS-3 simulator,” SIGCOMM Demon-

stration, vol. 14, no. 14, p. 527, 2008.

[47] X. Li et al., “Using” random forest” for classification and regression.,”
Chinese Journal of Applied Entomology, vol. 50, no. 4, pp. 1190–1197,
2013.

[48] A. Singh, M. Xiang, A. Konsgen, C. Goerg, and Y. Zaki, “Enhancing
fairness and congestion control in multipath TCP,” in 6th joint IFIP

Wireless and Mobile Networking Conference (WMNC), pp. 1–8, IEEE,
2013.

[49] S. Ferlin, Ö. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revisiting
congestion control for multipath TCP with shared bottleneck detection,”

in IEEE INFOCOM 2016-The 35th Annual IEEE International Confer-

ence on Computer Communications, pp. 1–9, IEEE, 2016.

[50] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE:
A real-time network emulator,” in MILCOM 2008-2008 IEEE Military

Communications Conference, pp. 1–7, IEEE, 2008.

[51] T. Zhang and S. Mao, “Machine learning for end-to-end congestion
control,” IEEE Communications Magazine, vol. 58, no. 6, pp. 52–57,
2020.

[52] R. Zhuang, J. Han, K. Xue, J. Li, D. S. Wei, R. Li, Q. Sun, and
J. Lu, “Achieving flexible and lightweight multipath congestion control
through online learning,” IEEE Transactions on Network and Service

Management, vol. 20, no. 1, pp. 46–59, 2022.

[53] A. Slivkins et al., “Introduction to multi-armed bandits,” Foundations

and Trends® in Machine Learning, vol. 12, no. 1-2, pp. 1–286, 2019.

[54] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International Conference

on Machine Learning, pp. 387–395, Pmlr, 2014.

[55] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu, “SmartCC: A
reinforcement learning approach for multipath TCP congestion control
in heterogeneous networks,” IEEE Journal on Selected Areas in Com-

munications, vol. 37, no. 11, pp. 2621–2633, 2019.

[56] J. Xu and B. Ai, “Deep reinforcement learning for handover-aware
MPTCP congestion control in space-ground integrated network of rail-
ways,” IEEE Wireless Communications, vol. 28, no. 6, pp. 200–207,
2021.

[57] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer

Communications, pp. 1871–1879, IEEE, 2018.

[58] S. R. Pokhrel, L. Pan, N. Kumar, R. Doss, and H. L. Vu, “Multipath
TCP meets transfer learning: A novel edge-based learning for industrial
IoT,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10299–10307,
2021.

[59] J. Hwang and J. Yoo, “Packet scheduling for multipath TCP,” in 2015

Seventh International Conference on Ubiquitous and Future Networks,
pp. 177–179, IEEE, 2015.

[60] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in Proceedings of the 2014

ACM SIGCOMM Workshop on Capacity Sharing Workshop, pp. 27–32,
2014.

[61] M. Scharf and S. Kiesel, “NXG03-5: Head-of-line blocking in TCP and
SCTP: Analysis and measurements,” in IEEE Globecom 2006, pp. 1–5,
IEEE, 2006.

[62] P. Dong, J. Xie, W. Tang, N. Xiong, H. Zhong, and A. V. Vasilakos,
“Performance evaluation of multipath TCP scheduling algorithms,” IEEE

Access, vol. 7, pp. 29818–29825, 2019.

[63] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“DAPS: Intelligent delay-aware packet scheduling for multipath trans-
port,” in 2014 IEEE International Conference on Communications

(ICC), pp. 1222–1227, IEEE, 2014.

[64] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in 2014 28th International

Conference on Advanced Information Networking and Applications

Workshops, pp. 749–752, IEEE, 2014.

[65] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” in
2016 IFIP Networking Conference (IFIP Networking) and Workshops,
pp. 431–439, IEEE, 2016.

[66] T.-A. Le and L. X. Bui, “Forward delay-based packet scheduling algo-
rithm for multipath TCP,” Mobile Networks and Applications, vol. 23,
no. 1, pp. 4–12, 2018.

[67] F. Silva, M. Togou, and G.-M. Muntean, “An innovative machine learn-
ing approach to improve MPTCP performance,” in 2020 International

Conference on High Performance Computing and Simulation, IEEE,
2020.

[68] X. Su, X. Yan, and C.-L. Tsai, “Linear regression,” Wiley Interdisci-

plinary Reviews: Computational Statistics, vol. 4, no. 3, pp. 275–294,
2012.

[69] T. M. Mitchell, “Artificial neural networks,” Machine Learning, vol. 45,
no. 81, p. 127, 1997.

[70] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz,
“Multipath QUIC: A deployable multipath transport protocol,” in 2018

IEEE International Conference on Communications (ICC), pp. 1–7,
IEEE, 2018.

60 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



[71] S. R. Pokhrel and A. Walid, “Learning to harness bandwidth with
multipath congestion control and scheduling,” IEEE Transactions on

Mobile Computing, 2021.
[72] Q. Peng, A. Walid, and S. H. Low, “Multipath TCP algorithms: The-

ory and design,” ACM SIGMETRICS Performance Evaluation Review,
vol. 41, no. 1, pp. 305–316, 2013.

[73] B. Chihani and C. Denis, “A Multipath TCP model for ns-3 simulator,”
arXiv preprint arXiv:1112.1932, 2011.

[74] K. Nadeem and T. M. Jadoon, “An NS-3 MPTCP implementation,” in
Quality, Reliability, Security and Robustness in Heterogeneous Systems:

14th EAI International Conference, Qshine 2018, Ho Chi Minh City,

Vietnam, December 3–4, 2018, Proceedings 14, pp. 48–60, Springer,
2019.

[75] M. Coudron and S. Secci, “An implementation of multipath TCP in
NS3,” Computer Networks, vol. 116, pp. 1–11, 2017.

[76] B. Y. L. Kimura and A. A. F. Loureiro, “MPTCP linux kernel congestion
controls,” arXiv preprint arXiv:1812.03210, 2018.

[77] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-

tion Review, vol. 38, no. 4, pp. 63–74, 2008.
[78] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-

ing data centers randomly,” in 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), pp. 225–238, 2012.
[79] C. Paasch and S. Barre, “Multipath TCP in the linux kernel.” available

from http://www.multipath-tcp.org.

MAISHA MALIHA ET AL.: A SURVEY ON CONGESTION CONTROL AND SCHEDULING FOR MULTIPATH TCP 61


