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Abstract— Place recognition is an essential part of robot
localization and mapping problems. Using lower data-rate
sensors like 2D scanning laser rangefinders enables the robots to
use less memory and computation in building maps. However,
place recognition by a vehicle with 6-DOF dynamics like a
quadrotor in unstructured, 3D environments like forests is
challenging, especially with a sensor that only measures a
planar slice of the environment. This paper extends the 2D
geometry-based place recognition system of [1] to a challenging
forest envirnoment with a novel procedure for selecting stable
and salient 2D laser interest points using Dirichlet process
clustering (DP-means). This method is tested on both synthetic
and real data from a forest trail and compared with [1]. The
result reveals the importance of salient interest point selection in
allowing accurate and fast place recognition. Our approach also
ensures a low bandwidth representation of visited areas, making
it suitable for real-time, multi-agent SLAM applications.

I. INTRODUCTION

Autonomous mobile robots possess great potential for
assisting humans in challenging scenarios like wilderness
search and rescue. Agile quadrotors equipped with onboard
sensing and autonomy can navigate and map challenging
GPS-denied environments such as building interiors and
dense forests. Using a fleet of multiple autonomous vehicles
in a large environment can improve system performance, but
demands robust localization and mapping to correct for drift
and merge maps.

Place recognition is a key component of any SLAM
system and has a rich literature for single robot systems
equipped with stereo or monocular cameras [2]–[5]. How-
ever, these approaches typically require access to multiple
images which would be costly to communicate over a limited
bandwidth communication network. Recently, a number of
techniques inspired by vision-based place recognition have
been applied to 2D lidar data to facilitate real-time loop clo-
sure on large datasets spanning 100s of meters [1], [6], [7].
The low data rate of 2D lidar measurements when compared
with camera images and visual features makes these systems
promising for multi-agent SLAM and exploration systems
[8], [9]. However, these approaches have only been applied
to datasets that are either indoors, outside of buildings, or
in fairly simple outdoor environments (such as the Victoria
Park dataset [10]). The case of wilderness search and rescue,
which can occur in heavily forested regions with varying
topography and irregularly shaped and positioned trees, poses
an inherent difficulty for place recognition techniques that
perform well in more structured environments. Motivated by
the problem of rapidly exploring and mapping an expansive
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Fig. 1: Image of Middlesex Fells Reservation, a forested park north
of Boston. Varying topography, tree angles, tree size, occlusions and
strong perceptual aliasing make place recognition and subsequent
loop closure challenging for mobile robots. Additionally, trails are
usually traversed in one of two opposing directions, limiting the
effectiveness of perspective cameras for place recognition.

and dense forest, this paper presents an approach to multi-
agent place recognition that is: 1- functional in a variety
of natural and man-made environments, 2- lighting and
viewpoint invariant, 3- operational over a low-bandwidth
network, and 4- suitable for real-time applications. The
system presented in this paper is an extension of the approach
in [1]. Their work is extended by adding a novel interest point
stabilization procedure for 2D laser data using DP-means
clustering [11] that allows geometric loop closing techniques
to work in difficult forest environments. A new 281 m forest
trail dataset collected at Middlesex Fells Reservation exhibits
the usefulness of our technique.

The rest of the paper is organized as follows: related work
is summarized in Section II. The baseline place recognition
system of [1] is explained in Section III. Section IV describes
stable interest point selection via RANSAC and DP-means
clustering, constituting our main contribution. Experimental
setup and results are discussed in Section V, and the paper
is concluded in Section VI.

II. RELATED WORK

Place recognition is a large and active research problem.
For vision based systems, bag-of-words (BoW) approaches
have had notable success. In particular, the FAB-MAP 2.0
algorithm presented in [2] achieves excellent precision and
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recall for very large datasets. FAB-MAP is extended to incor-
porate inter-feature geometry in [3], improving performance.
The popular DBoW2 algorithm presented in [5] uses binary
features to achieve state of the art speed and accuracy. How-
ever, most visual BoW approaches use geometric verification
steps that would require the transmission of large amounts
of image feature data. Additionally, they are not typically
not viewpoint invariant unless omnidirectional cameras are
used. The high bandwidth requirements are addressed with
a distributed vocabulary in [12], but this does not reduce the
information exchange by the extent required for networks
with transmission rates on the order of 10 kb/s. In [4],
Milford demonstrates visual route recognition with heavily
compressed and downsampled images but requires either
a omnidirectional camera or long overlapping trajectories
in the same orientation for a perspective camera equipped
robot, both of which can be prohibitive for some robots and
missions.

Perceptual aliasing makes place recognition particularly
challenging in forest environments. Bosse and Zlot [13],
[14] developed a keypoint voting nearest neighbor algo-
rithm to find loop closure in forest settings. Although
their result is promising and finds loop closures in sub-
linear time, they have used 3D laser data to extract 3D
regional point descriptors which requires a 3D laser and
high-dimensional keypoint representations. This makes their
approach prohibitive for light aerial vehicles with limited
communication. The introduction of fast laser interest region
transform (FLIRT) features in [15], inspired by scale and
rotation invariant features in images, introduced a number of
2D laser-based loop closure techniques. A BoW approach
using FLIRT features is developed in [6] and extended
in [16]. These algorithms use the viewpoint-invariance of
features and their ordering in a 2D lidar’s angular scan to
generate loop closure candidates with histograms of word
frequencies. This approach, however, suffers from the limited
expressiveness of 2D laser data in comparison with rich
vocabularies built from higher dimensional vision data. This
is especially true for forest environments, where individual
trees have similar and nondescript shapes. Similarly to [3],
the geometry of keypoint locations is directly used to build
Geometric LAndmark RElations (GLARE) signatures in [7].
These GLARE descriptors are translation invariant and show
superior performance over laser-based BoW techniques on
publicly available datasets [1].

The work by Dong et al [9] presents a real-time multi-
agent SLAM solution using FLIRT descriptors in approxi-
mate nearest neighbor-based histogram voting. Although this
approach is less accurate than methods using inter-feature
geometry like GLARE [1], they improve performance using
robust outlier rejection in their back-end SLAM system.
Their method required network bandwidth that could support
each agent broadcasting at 25 kB/s, limiting operational
range and reliability. Geometric descriptors like GLARE can
mitigate this requirement by transmitting only the coordi-
nates of a sparse subset of interest points. To this end, we
extend the work in [1] by adding a stable interest point

Fig. 2: Block diagram of place recognition. Our main contribution
is to add stable interest point extraction module (green block).
Only stable interest features are chosen from FLIRT output and are
fed to GLAROT module ( green line). Our work is an extension
of [1], where the FLIRT output is directly fed to GLAROT module
(dashed lines). The EKF block is the extended Kalman filter-based
localization of [18].

extraction procedure in our place recognition pipeline (see
Figure 2). This enables us to choose stable interest points by
using DP-means clustering. The results show improvement
in speed and performance on a forest data set collected at
Middlesex Fells Reservation.

III. PLACE RECOGNITION

The problem of place recognition is posed as accurately
associating a stream of 2D laser scans St of an environment
with previous measurements of the same location stored in
a database D. This database can be on board the vehicle or
accessed remotely via a wireless network.

Figure 2 depicts the place recognition pipeline. Algo-
rithm 1 describes the approach, which is an extension of
the system found in [1]. The input of the algorithm at time t
is the altitude ht from an altimeter, body frame acceleration
and angular velocity, (at, ωt), which are estimated by an
IMU, and 2D laser scans St. First, a set of interest points
{pti} is extracted from each incoming laser scan St by using
FLIRT (line 8). In [1] these points are immediately used to
form a GLARE signature Gt which summarizes the interest
point geometry of scan St and allow a fast search of D
for 20 candidate scans {S ′t} (line 13). We adds a ‘stable
interest point (SIP)’ block as our contribution (line 12). This
procedure generates a stable and salient set of points {qti}
from a window of recent scans {Sk}tk=t−T for some length
of time T (1 second in this work). This set of points is then
used in the remainder of the pipeline instead of {pti}. The
interest points from these candidate scans are then checked
using a correspondence graph (CG) matching procedure [17]
(line 15). A match (S∗)t ∈ {S ′t} is accepted as a recognized
place if the number of matching interest points exceeds some
threshold Nth (line 15-17).

A. Laser Interest Point Detection

Modern laser interest point algorithms include FLIRT
[15] and, more recently, FALKO [19]. Both consist of a
configurable detector and descriptor pairing. Inspired by
scale invariant feature detection in computer vision, FLIRT
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Algorithm 1 Place Recognition Algorithm

1: t′ ← 0
2: while true do
3: Input: at, ωt, ht, St
4: P t ← ∅
5: (S∗)t ← ∅
6: S′ ← ∅
7: Xt ← EKF(at, ωt, ht, St)
8: {pti} ← FLIRT(St)
9: P t ← {pti}

10: if t′ ≥ T then
11: t′ ← 0
12: {qtj} ← StableInterestPoints(P t−T :t, Xt)
13: {s′} ← GLAROT({qtj})
14: for s′k in S′ do
15: if CG({qti}, s′k) ≥ Nth then
16: (S∗)t.add(s′k)
17: end if
18: end for
19: end if
20: t′ ← t′ + 1
21: Output: (S∗)t

22: end while

detects interest points in either the range, local normal,
or curvature of a scan at multiple geometric scales. The
FLIRT descriptors are grids capturing the shape local to
their corresponding interest point. FALKO detects interest
points that can be fitted by intersecting lines describing
corners. FALKO is designed to be more orientation and scan
density invariant than FLIRT and outperforms FLIRT on
many datasets in [1]. However, since a forest environment’s
most salient features are trees of varying sizes, using FLIRT
range interest points outperformed FALKO. This is due to
FLIRT range detection’s ability to easily capture the sharp
range discontinuities caused by trees, which do not closely
resemble corners.

Even with its multi-scale detection’s ability to pick out
salient features in a forest, FLIRT features are not very
stable in our Middlesex Fells Reservation dataset, pictured in
Figure 1. To measure stability, we performed a consecutive
RANSAC matching procedure on FLIRT interest points
{pti} from scan St against the previous M scans. The
RANSAC stabilization performed by Algorithm 2 selects a
set of inlier points denoted {pti}1 that best agree with a 2D
transformation between scan St and St−1. This procedure is
then repeated between {pti}1 and points {pt−2i } from St−2
until the “surviving” points {pti}M are obtained or there are
no inliers remaining. The normalized histogram in Figure 3
visualizes the distribution of interest point lifetimes for data
collected in the forest and data collected in an indoor flight
laboratory. The mean lifetime for forest data interest points
is 6.32 consecutive scans, whereas for indoor data the mean
is 21.26 scans.

Algorithm 2 RANSAC-based Stability Test

1: Input: M, {S}ti=t−M
2: {pt} ← FLIRT(St)
3: i← 1
4: while i < M and {pt} not empty do
5: {pt} ← RANSAC({pt},St−i)
6: i← i+ 1
7: end while
8: Output: {pt}

Fig. 3: Distribution of stability of FLIRT interest points on laser
scans from Middlesex Fells reservation. The x-axis is the average
number of consecutive scans a feature remains in an inlier set
computed with RANSAC. The indoor data contains corners and
other features that are highly structured and more uniform in the
vertical direction.

B. GLARE Signatures

Geometric landmark relations (GLARE) were introduced
in [7] as signatures for capturing viewpoint-invariant geomet-
ric properties in a set of interest points. Given a set of interest
points {pti} extracted from a scan St, a GLARE signature is
essentially a distribution over the pairwise euclidean distance
ρti,j and angular distance θ+i,j between pairs. Figure 4 depicts
this process: for every pair of points (pti, p

t
j), their distance

and relative angle in the scan frame are computed as

ρti,j =
∥∥pti − ptj∥∥ , (1)

θti,j = atan2(yti − ytj , xti − xtj), (2)

θ+i,j = max(θti,j , θ
t
j,i). (3)

Once the pairs (θ+i,j , ρ
t
i,j) have been computed, they are

assigned to bins in a histogram

(θ+i,j , ρ
t
i,j) ∈ bin(nθ, nρ), (4)

where nθ and nρ are the integers corresponding to the quan-
tization of (θ+i,j , ρ

t
i,j) in the range [0, ρmax]m× [0.0, π]rad.

To account for noise in the interest point detection, a weight
drawn from a Gaussian distribution is computed for cell
n = (nθ, nρ) and adjacent cells. Thus, each feature pair
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Fig. 4: GLARE signature (right) for a set of FLIRT interest points
(left) extracted from a laser scan collected at Middlesex Fells
Reservation. Hotter colors represent higher frequency of point pairs
at the distance and angular offset indicated by a bin.

produces a histogram matrix Hi,j ∈ RNρ×Nθ with values

Hi,j(m) = N (m− n,ΣH), (5)

where Σ ∈ R2×2 is a tunable covariance matrix describing
the noise. The glare descriptor Gt is defined as

Gt = η
∑
i,j

Hi,j , (6)

where η is a normalizing factor. As noted in [1], GLARE
features are invariant to rigid rotations of the constituent
interest points up to circular shifting of columns of Gt.
Thus, their GLAROT (GLAre ROTation-invariant) procedure
is used to compare two GLARE features. This defines the
distance between two signatures Gs and Gt as the shifted
L1 norm, SL1:

SL1(Gs, Gt) = min
0≤k<Nθ

Nρ−1∑
i=0

Nθ−1∑
j=0

|Gti,j −Gsi,(j+k)modNθ
|).

(7)
This procedure involves Nρ×N2

θ pairs of fast array lookups,
subtractions, and absolute value operations per query. This
allows SL1 to be efficiently computed over the GLARE
features of the database of previously encountered scans D
and the GLARE feature of a query scan S, selecting the
N previously measured scans that have the least GLAROT
distance with the query as loop closure candidates. In ex-
periments, the GLAROT search procedure never exceeded 4
ms of runtime with Nρ=120 and Nθ=12 over a maximum of
200 queries.

C. Correspondence Graph Matching

Once a set of N scans has been retrieved by the GLAROT
procedure, a correspondence graph (CG) matching procedure
is used to find the 2D geometric transformation producing
the largest inlier set. The method in [17] displayed superior
performance over a Generalized Hough Transform-based
approach and a RANSAC matcher on a number of publicly
available datasets in [1].

Given two sets of points {pis} and {pit}, each vertex vis,it
of the CG represents a hypothetical correspondence between

points pis and pit . Any given pair of vertices vis,it and
vjs,jt is connected if

||pis − pjs | − |pit − pjt || < ε (8)

for a tolerance ε. Once formed, the largest possible corre-
spondence that represents a ε-tolerant rigid 2D transforma-
tion from a subset of {pis} to a subset of {pit} is given by
the maximum clique in the CG. To find the maximum clique,
the fast maximum clique dynamic algorithm presented in [20]
is used. Forming the CG and computing the maximum clique
for the N candidates retrieved by GLAROT constitutes the
most computationally expensive stage of the pipeline.

IV. STABLE INTEREST POINT SELECTION

Datasets collected in highly structured environments such
as the Intel or MIT-CSAIL datasets contain features that
can be reliably identified in a single laser scan. By con-
trast, our Middlesex Fells dataset does not produce interest
points that are stable enough through consecutive scans.
The reasons for this instability include: 1) trees, branches
and elements of bushes whose thickness is on the order of
laser rangefinder noise and angular resolution, 2) varying
topography and objects (trees, bushes, hillsides) with a lot
of 3D structure, as opposed to the highly “2.5D” nature of
structured environments, 3) platform altitude/attitude that is
less stable than data collected on a wheeled vehicle, and 4)
evolving occlusions caused by trees at a multitude of ranges
from the laser. These effects lead to poor performance in
the GLAROT and CG-matching procedures when interest
points from single scans are used. To remedy this situation,
we propose two methods by which only a stable and salient
subset of interest points are chosen.

Our experimental data differs from previous datasets
amenable to FLIRT and GLARE in that it was collected on
a hand-carried sensor rig subject as opposed to a wheeled
vehicle. Since, like a quadrotor in flight, the vehicle is free
to roll, pitch, and change its altitude, consecutive scans
from the laser rangefinder do not necessarily lie within the
same plane. In order to utilize the 2D place recognition
techniques, we make the assumption that trees are roughly
perpendicular to the xy-plane of the global odometry frame.
Coordinates of raw laser measurements are projected from
the laser’s frame of reference into a frame local to the laser
but rotated such that its z-axis is perpendicular to the global
odometry frame’s z-axis and its x-axis is aligned with the
laser frame’s x-axis’s projection onto the global xy-plane.
This transformation is made possible with the EKF-provided
odometry measurements. Once transformed into this frame,
the points are projected onto to the xy-plane of the frame
and FLIRT extraction proceeds on these 2D points.

A. RANSAC-Stabilized FLIRT Interest Points

The first method by which stable interest points are
selected is the RANSAC procedure described in section III
and Algorithm 2. This reduces the points used to a subset
that is more reliably detected across consecutive scans. One
problem with this approach is that stable or salient features
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Fig. 5: Interest points taken from a sample scan in the forest. The
small red points are raw laser measurements, large blue circles
are FLIRT interest points, and the light green boxes are the 100
most stable DP-means cluster centers. The magenta circles identify
regions that are not interest points of the current scan due to
occlusions or some other source of instability. Using the M largest
cluster centers in a 1s window of time as interest points keeps the
descriptiveness of these points.

that are temporarily not detected due to interruption from
rolling/pitching of the sensor rig, brief occlusions, or noisy
range measurements may be detrimentally omitted.

B. DP-Means Clustering

Since RANSAC-based stabilization requires an interest
point to remain in view for multiple consecutive scans, it can
unwittingly throw out interest points that show up frequently
in the same neighborhood but with some interruptions. To
remedy this, we propose clustering interest points in order
to select the M clusters containing the most interest points
extracted over a 1 second window of scans. Selecting only
the clusters with the most points rejects erroneous outliers
(e.g. FLIRT interest points caused by sensor noise or unstable
3D elements of the environment). The effects of clustering
are depicted in Figure 5, where the circled clusters represent
interest points that have gone out of view in the last second.

The DP-means clustering algorithm is preferred over tradi-
tional k-means for our problem because instead of requiring
the number of clusters k as input, it requires the cluster
penalty parameter λ which corresponds to the maximum
radius of a cluster. Since the number of salient interest points
in a particular sequence of scans is unknown a priori, it is
hard to choose an intuitive value for k. On the other hand, a
forest typically has a range of tree radii that is easy to deduce
and whose upper limit is a good value for λ. We use the open
source C++ implementation of the dynamic means algorithm
[21], which is a batch-sequential extension of DP-means.

V. RESULTS

We tested our system on both synthetic 2D data and on
real data collected by a sensor rig carried by hand through
a forest. The synthetic experiments establish the viability of

Fig. 6: A scan of the simulated forest. Solid green circles are
detected trees, hollow red circles are occluded trees, and grey circles
are trees outside of the scanner’s range. The trees are distributed via
a 2D Poisson point process. Tree radii are drawn from the uniform
distribution over 0.05 m to 0.2 m. Radial Brownian motion is used
to simulate the vehicle moving closer to trees at certain points in
its trajectory, increasing the occluded regions’ areas.

geometric place recognition techniques in an environment
with randomly distributed point features. All experiments
were performed on a 3.4GHz Intel Core i7-4670K processor.

A. Simulation Experiment

A Python simulation was created in order to test the
effectiveness of GLARE and CG matching for finding loop
closures in a forest environment. A 2D Poisson point process
is used in the simulation to generate a uniform random
distribution of points representing tree positions [22]. Each
point is also given a uniformly sampled radius, as displayed
in Figure 6. A simulated robot travels through a cleared
circular path with 5.0 m width and 32.5 m radius, while un-
dergoing bounded radial Brownian motion. After completing
one circle, it turns around and returns along the same path,
forming many candidate loop closures. During this time, the
robot collects 100 range scans in a 270◦ radial field of view
to match the hardware experiments in section V-B, with
a synthetic normal standard deviation of 0.18 m (close to
the diameter of large trees commonly found in the dataset)
applied to the range measurements. A sample simulated scan
can be seen in Figure 6.

GLAROT signatures for each scan are created and com-
pared to find 10 candidates for CG matching. Finally, CG
matching is performed, and the CG threshold clique sizes
are varied to give the precision-recall curves in Figure 7.
The high precision (ratio of correct loop closures to the
total number of posited loop closures) that can be achieved
indicates that local tree geometry is sufficiently descriptive
to perform localization and mapping. The imperfect recall
(fraction of loop closures found) is a result of laser range
noise overcoming the CG matching algorithm; running the
simulation with no error results in perfect recall. Addition-
ally, some recall is lost due to occlusion, but can be partially
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Fig. 7: Precision-recall curves for three scenarios. In the no oc-
clusion scenario, any tree within the scanner range is detected.
Occlusion accounts for trees blocking vision of other trees behind.
Accumulation uses data from several consecutive laser scans, seeing
some previously occluded trees.

regained by using several consecutive scans to see trees
that were previously blocked from vision. This accumulation
effect is provided by DP-means as it returns cluster centers
from interest points over the previous T scans.

B. Hardware Experiment

For the hardware experiment, a dataset was collected by
a sensor rig carried through a forest trail in Middlesex
Fells Reservation, pictured in 1. The data was collected
in a loop that is essentially an outbound traversal of a
path followed by a return that traces the same path with
opposite heading. The path was recorded with coarse GPS
measurements displayed in Figure 8. The sensor rig con-
sisted of a horizontally mounted Hokuyo UTM-30LX laser
rangefinder, a Pixhawk unit providing inertial measurements,
a downward-facing LidarLite for altitude measurements, and
an Intel NUC computer to collect the data in the form
of Robot Operating System (ROS) messages. The Hokuyo
produced laser measurements at a rate of 40 Hz over an
angular field of view of 270◦ with 0.25◦ angular resolution.
The inertial measurements and LidarLite measurements were
processed at 100 Hz. The laser was manually stabilized as
best as possible but still experienced significant pitch and roll
due to natural oscillations in the carrier’s gait, occasionally
exacerbated by rough terrain and changing topography. Fu-
ture work will utilize quadrotor flight in order to characterize
the significance of vehicle dynamics on performance.

To detect ground-truth loop closures, we estimated the
rig’s trajectory using the extended Kalman filter (EKF)
described in [18] on 2D laser scan matching, LidarLite
measurements h, and IMU measurements of acceleration
a and angular velocity ω. The collected data was then
used offline to simulated loop closure using the methods

Fig. 8: Sparse GPS localization for Middlesex Fells dataset. The
path has a loop with two legs overlapping on the same trail,
providing many opportunities for place recognition between. The
roughly 180◦ angular offset between headings on the outbound and
inbound leg make the loop closure detections more difficult given
that the laser rangefinder’s field of view is 270◦.

described in sections III and IV. The trajectory was “played
back” in sequence, allowing the algorithm to accumulate
a database D of scans with which to compare incoming
scans. The precision recall-curves in figure 9 are generated
by considering all correspondence graph matches with a
number of matching pairs of points above a variable thresh-
old Nth as positive matches. Candidates for correspondence
graph matching are gathered with the 20 smallest GLAROT
signature distances. Place recognition is attempted once per
second, and multiple false positives from a single recognition
attempt (i.e. erroneous matches that have more than Nth
points) all contribute to the precision computation. Since the
instability of features means that FLIRT features chosen from
a single scan are sensitive to the set of features used, 4 runs
with randomly offset starting points in the first second of data
were used and averaged to create the precision-recall curves
of Figure 9. The starting time also slightly affected the DP-
means approach at high values of Nth (i.e. high precision).
This is because DP-means cluster locations are sensitive to
the order in which data is processed, and a random seed is
used to shuffle data input order in our implementation [21].
Selecting parameters or augmenting the algorithm to reduce
this instability is an important avenue for future work that
can be tested with larger datasets.

In Figure 9, we observe that choosing only FLIRT points
that survive at least 1 round of RANSAC does not have a
strong effect on the resultant precision and recall. However,
table I indicates that this culling of superfluous points leads
to a mean runtime over 6 times faster. A speed-up is also
exhibited with using the M=70 largest DP-means cluster
centers instead of raw FLIRT interest points, with signifi-
cant precision-recall performance improvements. Figure 11
visualizes the increased number of valid correspondences
that are discovered by the DP-means approach at Nth=12
over using the unfiltered FLIRT features. The faster runtime
and higher recall values at precisions greater that 0.5 of DP-
means feature stabilization could enable single or multi-agent
systems with robust SLAM backends to perform in real time
as in [9]. Additionally, sharing only 70 points over a period
of 1-2 seconds uses far less bandwidth than that system.
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TABLE I: Runtime and Number of Points Used

Algorithm Runtime: µ (Max.) No. of Points µ (Max.)
Baseline [1] 2.43 (7.55) 75.61 (119)
RANSAC 2 0.35 (1.53) 44.58 (88)

70 DP-means Clusters 1.13 (1.55) 70 (70)

Fig. 9: Precision-recall curve for Middlesex Fells path 1. Using
un-clustered FLIRT features from a single scan (red curve) leads
to much worse performance than choosing the N largest clusters
from a DP-means clustering of 1 second’s worth of scans.

VI. CONCLUSION

This paper presents an extension of the work in [1] for
use in a challenging forest environment on a vehicle with 3D
dynamics. Recent geometrical place recognition techniques
are shown in simulation and on real world data to be useful
for place recognition in a forest, provided a stable and salient
subset of laser interest points are selected to describe a place.
The DP-means clustering algorithm is exhibited as a fast and
intuitive to tune way to select a small but descriptive set of
points to represent a place on a forest trail.

Our results indicate that 2D laser-based place recognition
techniques are able to identify loop closures with reasonable
precision and recall in an environment with lots of 3D
structure. This is a potentially useful strategy for UAVs with
limited sensors, computing power, storage, or communication
with a base station or other vehicles in a multi-agent SLAM
system. Specifically, we show that a place in a forest can be
summarized by 70 or fewer 2D points and compared against
a database at almost 1 Hz. This is an order of magnitude
reduction on the number of points in a single scan of the
Hokuyo UTM-30LX used (1080 points), and far less than
image features, which are commonly on the order of 100s
of kB per query [12]. Future work can leverage this approach
on real time multi-agent systems in large scale mapping and
localization missions.
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