
2114 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 6, DECEMBER 2021

Robustness Analysis of Neural Networks via
Efficient Partitioning With Applications

in Control Systems
Michael Everett , Golnaz Habibi , Member, IEEE , and Jonathan P. How , Fellow, IEEE

Abstract—Neural networks (NNs) are now routinely
implemented on systems that must operate in uncertain
environments, but the tools for formally analyzing how this
uncertainty propagates to NN outputs are not yet common-
place. Computing tight bounds on NN output sets (given
an input set) provides a measure of confidence associ-
ated with the NN decisions and is essential to deploy NNs
on safety-critical systems. Recent works approximate the
propagation of sets through nonlinear activations or par-
tition the uncertainty set to provide a guaranteed outer
bound on the set of possible NN outputs. However, the
bound looseness causes excessive conservatism and/or
the computation is too slow for online analysis. This let-
ter unifies propagation and partition approaches to pro-
vide a family of robustness analysis algorithms that give
tighter bounds than existing works for the same amount
of computation time (or reduced computational effort for
a desired accuracy level). Moreover, we provide new par-
titioning techniques that are aware of their current bound
estimates and desired boundary shape (e.g., lower bounds,
weighted �∞-ball, convex hull), leading to further improve-
ments in the computation-tightness tradeoff. The letter
demonstrates the tighter bounds and reduced conser-
vatism of the proposed robustness analysis framework
with examples from model-free RL and forward kinematics
learning.

Index Terms—Neural networks, uncertain systems,
robotics.

I. INTRODUCTION

NEURAL networks (NNs) are ubiquitous across robotics
for perception, planning, and control tasks. While empir-

ical performance statistics can indicate that a NN has learned
a useful input-output mapping, there are still concerns about
how much confidence to associate with decisions resulting
from a learned system. One direction toward providing a con-
fidence measure is to consider how the various sources of

Manuscript received September 14, 2020; revised November
23, 2020; accepted December 7, 2020. Date of publication
December 16, 2020; date of current version April 9, 2021. This work was
supported by Ford Motor Company. Recommended by Senior Editor
C. Seatzu. (Corresponding author: Michael Everett.)

The authors are with the Aerospace Controls Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: mfe@mit.edu; ghabibi@mit.edu; jhow@mit.edu).

Digital Object Identifier 10.1109/LCSYS.2020.3045323

uncertainty in training/execution processes map to uncertainty
in outputs of trained NNs. Many of these uncertainties appear
at the NN input (e.g., from noisy/adversarially attacked sens-
ing, unknown initial conditions), thus this letter focuses on
the problem of propagating input uncertainties through NNs
to bound the set of possible NN outputs online.

Analysis of how a set of possible inputs propagates through
a NN has an inherent tradeoff between computation time
and conservatism. Exact methods [1]–[6] are computationally
intractable for online analysis, so we focus on finding guar-
anteed outer bounds on the network outputs. Most existing
methods propagate the entire input set through the NN – we
refer to these as Propagators [7]–[12].

Although some of these propagators scale to high dimen-
sional NNs, large input sets (e.g., from high state uncer-
tainty) induce massive conservatism, even for small NNs.
Partitioners [13]–[17] are a promising direction toward prop-
agating large input sets through NNs, particularly when the
number of uncertain NN inputs is relatively small, as in many
control systems. Nonetheless, current partitioners spend exces-
sive computational effort when refining cells and suffer from
simple propagation strategies.

The contributions of this letter are: (i) a family of anal-
ysis tools that provide tighter guaranteed bounds on possible
NN outputs for the same computational effort compared to the
state-of-the-art, (ii) two new partitioning algorithms that effi-
ciently refine the input set partition based on desired output
set shapes, (iii) demonstrations of the proposed algorithms on
NNs used in practice, including various NN architectures (e.g.,
fully connected, LSTM), deep NNs, and NNs with various
nonlinear activations (e.g., ReLU, tanh), and (iv) applications
on control systems to improve a robust RL agent’s navigation
efficiency by 22% and reduce reachable set estimation error
by 96% for a robot arm.

II. BACKGROUND AND RELATED WORK

Problem Statement: Given a trained NN and a set of possible
NN inputs, the objective is to find the tightest guaranteed over-
approximation of the set of possible NN outputs. The exact
set of possible outputs is called the NN’s reachable set. In
general, finding the exact reachable set, U , is computationally
intractable for reasonably sized NNs; instead, the goal is to

2475-1456 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:55:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9377-6745
https://orcid.org/0000-0002-9130-9323
https://orcid.org/0000-0001-8576-1930

EVERETT et al.: ROBUSTNESS ANALYSIS OF NEURAL NETWORKS VIA EFFICIENT PARTITIONING WITH APPLICATIONS 2115

compute the over-estimate Ue such that U ⊆ Ue for a given
input set.

A. Propagators

Propagators estimate how the full input set moves through
the network, and they primarily differ in approximation strate-
gies of the nonlinear activation functions. At one extreme,
Interval Bound Propagation (IBP) [7] approximates the output
of each layer with a tight �∞ ball, leading to conserva-
tive but fast-to-compute bounds of the final layer. Convex
relaxation-based techniques [18] often achieve tighter bounds
with more computation by approximating nonlinear activa-
tions with linear bounds – some of these can be solved
in closed-form [10], [11]. Other propagators provide tighter
analysis at the cost of higher computation time, including
approaches based on QP/SDP [8], [9], and convex relax-
ation refinements [19]. While this letter focuses on analysis
of trained NNs, several recent works consider the orthogonal
problem of how to use these propagation techniques during
training [20].

B. Partitioners

Partitioners break the input set into smaller regions, compute
the reachable set of each small region, and return the total
reachable set as the union of each smaller region’s reachable
set. The idea is depicted in Fig. 2 for a simple NN with linear
activations. In the top row (without partitioning) IBP operates
on the full input set, leading to excessive conservatism in the
final output bound (top right: large red dashes vs. red shaded
region). The bottom row shows how IBP on two halves of the
input set leads to a tighter approximation of the output set.

The key difference between partitioning approaches is the
strategy for how to split the input set. Some works make one
bisection of the input set [13]; [14] splits the input set into a
uniform grid; [15] uses gradients to decide which cells to split
for ReLU NNs. [16] improves on [15] using “shadow prices”
to optimize how to split a particular cell (i.e., along which
dimension), but does not provide a way of choosing which
cells to split when computing tight reachable sets. As illus-
trated in [17], substantial performance improvements can be
achieved by stopping the refinement of cells that are already
sufficiently refined. Thus, the current state-of-art partitioner,
a Simulation-Guided approach (SG) [17], uses a partition-
ing strategy where Monte Carlo samples of the exact NN
output are used as guidance for efficient partitioning of the
input set, reducing the amount of computation required for
the same level of bound tightness. SG used IBP to compute
output sets, and the two ideas of Partitioners and Propagators
have been developed separately toward a similar objective.
This letter addresses key gaps in the partitioning literature:
we unify Partitioners with state-of-art Propagators for better
performance, propose new partitioners that are flexible in the
desired output set shape. We then show how improvements in
robustness analysis map directly to reduced conservatism in
control tasks.

III. APPROACH

This section introduces the overall architecture, describes
our new partitioning algorithms, then analyzes the reduction

Fig. 1. Robustness Analysis Architecture. This letter efficiently bounds
the set of NN outputs for a given input set.

Fig. 2. Partitioner Intuition. (Top) Large input sets cause loose bounds
on NN output sets, even for this simple 2-layer NN with linear acti-
vations. (Bottom) Tighter bounds can be achieved by partitioning the
input set, propagating each cell through the NN, and merging the output
sets [14], [17].

in conservatism from partitioning. Figure 1 shows a schematic
of the proposed framework with its three nested modules:
Analyzer, Partitioner and Propagator. The Analyzer is aware of
the desired output shape (e.g., lower bounds, �∞-ball, convex
hull) and termination condition (e.g., computation time, num-
ber of Propagator calls, improvement per step). The Analyzer
specifies a Propagator (e.g., CROWN [10], IBP [7], SDP [9],
Fast-Lin [11]) and a Partitioner (e.g., Uniform [14], Sim-
Guided [17] or the algorithms proposed in this section). The
Partitioner decides how to split the input set into cells, and the
Propagator is used by the Partitioner to estimate the output set
corresponding to an input set cell.

A. Greedy Simulation-Guided Partitioning

The state-of-art partitioning algorithm, SG [17], tightens
IBP’s approximated boundary with the following key steps: (1)
acquire N Monte Carlo samples of the NN outputs to under-
approximate the reachable set as the interval [usim] (where
[·] denotes a closed n-dimensional interval), (2) using IBP,
compute the reachable set of the full input set and add this
set to a stack M, and (3) (iteratively) pop an element from
M, and either stop refining that cell if its computed reach-
able set is within [usim], or bisect the cell, compute each
bisection’s reachable set, and add both to the stack. The
SG algorithm terminates when one of the cell’s dimensions
reaches some threshold, and the returned reachable set esti-
mate is the weighted �∞-ball that surrounds the union of all
of the cells remaining on the stack and [usim].

We propose a partitioning algorithm with better bound
tightness for the same amount of computation, called Greedy-
Sim-Guided (GSG), described in Algorithm 1, by modifying
the choice of which cell in M to refine at each step. Rather
than popping the first element from the stack (LIFO) as in SG,

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:55:44 UTC from IEEE Xplore. Restrictions apply.

2116 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 6, DECEMBER 2021

Algorithm 1: Greedy Simulation-Guided Partitioning

1 Input: propagator operator ([.]), termination condition
(Tc()), input interval ([η] ⊆ H), Adaptive flag (a = 1, if
AGSG is active), Neural Network �

2 Output: output boundary Ue
// Initialization and MC sampling

3 usim,n = �(xsim,n ∈ H), n = 1, · · · , N
4 [usim]← extrema of usim,n // sim boundary
5 M← ∅,Ue ← ∅
6 if a then

// AGSG: Adaptive Initialization
7 (η∗, u∗)← arg min

(η,u)
‖u− μ([usim])]‖2

8 ηe = Expand(η∗)
9 {[η′]i} = Decompose({[η] \ [ηe]}) // Fig. 3b

10 for [η′]i ∈ {[η′]i} do
11 [ui] = [�]([η]i)

12 M← M ∪ {([η]i, [ui])}}
13 else

// GSG: M is full interval
14 [u] = [�]([η])
15 M← M ∪ {([η], [u])}
// Partition Refinement

16 while M �= ∅ do
// Fig. 3a (Pop from M)

17 ([ηw], [uw])← argmax([η],[u])∈M d([u], [usim])
18 if [uw] ∈ [usim] then
19 Ue ← Ue ∪ [uw]

20 else
21 if Tc() then
22 break // Terminate

23 else
24 [η1], [η2] = Bisect([ηw])
25 [u1], [u2] = [�]([ηi=1,2])
26 M← M ∪ {([η1], [u1])} ∪ {([η2], [u2])}

27 return Ue ← Ue ∪ (∪{[η],[u]}∈M[u])

GSG refines the input cell with corresponding output range
that is furthest outside the output boundary of the N samples
(Line 17). This is illustrated in Fig. 3a, where the input cell
corresponding to d2 would be refined before d1, because d2’s
output set (magenta) further exceeds the simulation-guided
boundary estimate (black rectangle surrounding the black NN
samples).

Whereas SG might choose a cell that is not pushing the
overall boundary outward at a given iteration, GSG will always
choose to refine an input cell that is pushing the boundary. This
heuristic gives the opportunity to reduce the boundary estimate
at each iteration. While the core SG algorithm remains the
same, the greedy strategy can greatly improve the algorithm’s
performance.

B. Adaptive-Greedy-Simulation-Guided Partitioning

The Adaptive-Greedy-Sim-Guided (AGSG) algorithm
extends GSG’s initialization procedure to reduce wasted

Algorithm 2: Expand([η](0))

1 Input: Initial input interval([η](0)), step size(es), NN
propagator [�], simulated output set[usim]

2 Output: expanded interval [ηe]
3 [ηe]← [η](0)

4 [u]← [�]([ηe])
5 while True do
6 if [u] ⊂ [usim] then
7 [ηe]← [ηe]+ es
8 [u] = [�]([ηe])

9 else
10 [ηe]← [ηe]− es
11 return [ηe]

Fig. 3. (a) GSG selects from candidates in M: the input set correspond-
ing to the magenta output set is chosen for refinement, because d2 > d1
(where [usim] is the black box). (b) AGSG decomposition [η] \ [ηe] into
four new intervals [η′]1,2,3,4.

computation time refining unimportant input regions. When
a is activated, the AGSG initialization process is used (Lines
6-12). After computing [usim], AGSG initializes [ηe] as the
input point whose output is at the middle of simulated outputs.
This cell is repeatedly expanded with step size es as long
as its output set (computed by a Propagator) remains inside
[usim]. The Expand procedure is explained in Algorithm 2.
The expanding cell is guaranteed to produce an output inside
the simulated boundary.

Lemma 1: The overestimated output of the expanded
interval [ηe] ∈ H to the neural network � when the output set
is approximated by a propagator [�], is [ue] such that

[ue] = [�]([ηe]) ⊆ [usim]. (1)

Proof: Assume the expanded interval and its output esti-
mate at step t are denoted by [ηe]t and [ue]t respectively.
If [ue]t = [�]([ηe]t) �⊂ [usim], there are two possible cases:
(1) [ue]t−1 ⊂ [usim] (the expansion of [ηe]t−1 to [ηe]t causes
this outcome). In this case, [ηe]t is reduced back to [ηe]t−1

according to Algorithm 2’s expanding condition in line (9).
Thus, [�]([ηe]t−1) ⊆ [usim] – this condition is not sta-
ble. Case 2 would occur when [ue]t−1 �⊂ [usim], but this is
not possible, since the interval would never be expanded if
[ue]t−1 �⊂ [usim], unless the initial interval’s output is out-
side the simulated boundary: [ue](0) = [�]([ηe](0)). The initial
interval’s output cannot be outside the simulated boundary
(contradiction), since [ηe](0) is initialized via sampled inputs,
thus u(0) ⊂ [usim]. Therefore the approximated output of the
expanding input is always inside the simulated set.

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:55:44 UTC from IEEE Xplore. Restrictions apply.

EVERETT et al.: ROBUSTNESS ANALYSIS OF NEURAL NETWORKS VIA EFFICIENT PARTITIONING WITH APPLICATIONS 2117

Fig. 4. Input & output sets for different output set shapes. The esti-
mated bounds (black) are “tight” when they are close to the bounds
from exhaustive sampling (dashed red). The GSG partitioner with
CROWN [10] propagator ran for 2 sec.

The remaining input is decomposed into a set of disjoint
intervals [η′]i. Fig. 3 shows this decomposition in 2D, which
creates four new intervals [η′]1,2,3,4 (some of which could be
empty) of rectangle shape.1 The new intervals [η′]i are passed
to GSG as the initial M. The output set boundary estimate
returned by AGSG merges that GSG output and the initial
expanded cell’s output boundary.

C. Boundary Specification

While SG only computes a �∞-ball over-approximation,
GSG/AGSG optimize for the desired output set shape.
For example, if the goal is to find a convex hull over-
approximation, GSG/AGSG modify the idea from Fig. 3 to
select the input set that is furthest from the convex hull
boundary (instead of the �∞-ball, as in SG [17]).

IV. EXPERIMENTAL RESULTS

This section shows example partitions, applies the ideas to
a robotic arm task, demonstrates better closed-loop behavior
in collision avoidance, shows an ability to scale to various
network sizes/architectures, and measures improvement along
the time vs. tightness tradeoff.

A. Partitions for Different Output Shapes

The ability to partition efficiently for different output shapes
is shown in Fig. 4 for a randomly initialized NN with 2 inputs,
2 outputs, and 50 nodes in hidden layer, i.e., (2, 50, 2), with
ReLU activations, and input set [0, 1]× [0, 1]. Each of (a-c)
uses GSG with CROWN for 2 seconds. Recall that SG [14]
would only return one output set for (a-c).

B. Comparisons to Baselines & Ablation Study

Four partitioning algorithms are compared in Fig. 5 for the
same (2, 50, 2) NN and input set. Each analyzer runs for 2
seconds to compute an estimated output set. The true out-
put set is obtained by exhaustively sampling from the input
space, and error is reported as percent extra area, Aestimate−Atrue

Atrue
.

The proposed partitioning algorithms GSG (c) and AGSG
(d) use only 280 and 275 partitions respectively, and their
approximation error is 0.018, which indicates more than 79%
improvement over SG -CROWN (b) and 95% over the state of
the art SG-IBP [17]. In addition to quantitative improvement,
Fig. 5 illustrates the input set partitions of each algorithm,
which highlights how GSG refines different/fewer cells as SG,
and that AGSG does not strictly make bisections.

1Extension of the decomposition to higher dims. is left as future work.

Fig. 5. Input partitions for a random (2, 50, 2) ReLU NN analyzed for
2 seconds. New methods (b, c, d) reduce the number of input partitions
and output set (convex hull) error.

Fig. 6. Reachable set estimate of a robotic arm. GSG/AGSG-CROWN
achieves 96% lower error than [17] (2 sec.).

C. Applications in Robotics and Control

1) Reachable Set Analysis of Robotic Arm: Borrowing the
robotic arm model from [14], [17], we compare our algorithm
to [17] for reachable set estimation of a forward kinemat-
ics model. Fig. 6 shows the 2 DOF robot arm, with input
(θ1, θ2) as joint angles and output (x, y) as end effector posi-
tion. The nonlinear dynamics are modeled by a small (2, 5, 2)

NN with tanh activations. One motivation for computing tight
reachable sets here is to ensure that the robot arm will not
collide with any obstacles, without being overly conservative.
We assume a time limit of 2 sec to approximate the con-
vex hull of end effector positions from the set of joint angles
(θ1, θ2) ∈ [π

3 , 2π
3] × [π

3 , 2π
3]. As shown in Fig. 6a, AGSG-

CROWN reduces the error from [17] by 96%. Only switching

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:55:44 UTC from IEEE Xplore. Restrictions apply.

2118 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 6, DECEMBER 2021

Fig. 7. Multiagent collision avoidance under uncertainty. In (a), a robust but conservative trajectory from a robust RL formulation [21] that used
CROWN/Fast-Lin [10] to estimate worst-case Q-values under uncertainty on obstacle positions. In (b), the proposed GSG-CROWN algorithm
enables the orange agent to reach its goal faster (7 vs. 9 sec) while still avoiding the blue agent. This improved behavior is a result of tighter
estimates of worst-case Q-values, shown at a single timestep in (c) (purple→ green).

the partitioner (SG-IBP vs. (A)GSG-IBP) still achieves 80%
error reduction. The estimated boundary is shown in (c, d).

2) Multiagent Collision Avoidance: Deep RL methods are
popular in multiagent collision avoidance literature [22],
[23], but they rarely account for measurement uncertainty.
Reference [21] proposed a certifiably robust deep RL algo-
rithm, which involves estimating a tight lower bound on
the NN (e.g., DQN) output given that the agent could be
within some state set. In that work, large input uncertainties
can degrade performance, partially due to overly conservative
lower bounds from Fast-Weng et al. [11]. This example moti-
vates the need for tight reachable set estimation algorithms, as
proposed in this letter.

The robust-but-conservative behavior caused by
CROWN/Fast-Lin is shown in Fig. 7a (±0.5m uncertainty on
the blue agent’s position at each timestep). By instead using
GSG-CROWN to estimate worst-case Q-values (Fig. 7b), the
orange agent reaches the goal much faster while still avoiding
the blue agent. This improved behavior is a result of tighter
estimates of worst-case Q-values, shown at a single timestep
in Fig. 7c. For this experiment, a (11, 64, 64, 11) DQN
(11 states & 11 discrete actions) was trained with perfect
measurements in the gym-collision-avoidance envi-
ronment [24]. Furthermore, this application is a case where
only lower bounds on the NN outputs are needed, which
motivates the use of our proposed algorithms that can focus
computation toward this objective.

D. Scalability to Larger NNs

The proposed algorithms scale to bigger NNs as shown
in Table I and improve on existing methods by orders of
magnitude. For a given number of propagator calls (100), the
average error (close to 0 is best) of 10 random NNs is reported
for 4 different architectures (small, deep, higher dimension,
LSTM), and for different boundary types. The (4, 100, 10)
NN has uncertainty on the full 4D input set and the LSTM
uses 2D uncertainty on the last timestep. While this letter’s
approaches scale well to deep NNs and various architectures,
future work should consider the challenges from settings with
even higher dimensional input uncertainties.

E. Computation-Performance Tradeoff

Throughout this letter, we have leveraged the idea of par-
titioning the input set to tighten the approximated boundary.

TABLE I
APPROXIMATION ERROR (CLOSER TO 0 IS BETTER) FOR FOUR

DIFFERENT TYPES OF NNS: SMALL, DEEP, HIGHER DIMENSION, AND
LSTM. REPORTED VALUES ARE AVERAGE ERROR ACROSS 10

RANDOMLY INITIALIZED NNS AFTER UP TO 100 PROPAGATOR CALLS

To empirically show that bounds tighten with additional com-
putational effort, we plot several combinations of partitioners
and propagators in Fig. 8 over time. Each color corresponds
to a propagator (IBP, CROWN, SDP) and each marker corre-
sponds to a partitioner (SG, GSG, AGSG). This result uses the
robotic arm model and convex hull boundaries from before,
but with ReLU activations.

A first key takeaway is that additional computation time
leads to reduced error (increased tightness) Another key take-
away is that our framework provides many algorithms that
exceed the performance of previous state-of-art algorithms [9],
[10], [17]. Except the blue dashed line [17] and leftmost
green/orange points [9], [10], all of the options are new algo-
rithms proposed by this letter. The analysis provided in the
plots informs the choice of propagator and partitioner for

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:55:44 UTC from IEEE Xplore. Restrictions apply.

EVERETT et al.: ROBUSTNESS ANALYSIS OF NEURAL NETWORKS VIA EFFICIENT PARTITIONING WITH APPLICATIONS 2119

Fig. 8. Improvement in Computation Time vs. Accuracy Tradeoff. (a-c)
each compare different partitioners for a single propagator, (d) over-
lays (a-c) in one figure. Colors indicate Propagator; markers indicate
Partitioner. The GSG/AGSG approaches outperform the SG approaches
as the bounds are refined. This letter unified partition and propagation
ideas to give many new methods (everything without a red annotation)
that exceed the state-of-the-art.

a particular application with, say, a desired level of accu-
racy or budgeted resources (memory/computation). Overall,
for this task GSG-CROWN almost always provides the best
accuracy vs. computation time tradeoff, requiring ∼ 5× less
computation for the same accuracy as SG-IBP [17].

V. CONCLUSION

This letter proposed a suite of algorithms for online robust-
ness analysis of NNs that can provide confidence in NN
decisions under uncertainty. We build on recent work for
handling large uncertainties by proposing new, flexible par-
titioning algorithms and give theoretical rationale for parti-
tioning as a strategy for reducing conservatism. Furthermore,
we show how recent methods that efficiently relax NN nonlin-
earities can be unified with partitioning in a single framework,
which provides many new state-of-art algorithmic choices for
robotics applications. Along with showing improved aggregate
performance on random NNs with various sizes/architectures,
we show how these ideas can be applied to other learn-
ing tasks for control systems, showing a 22% improvement
in robust RL for multiagent collision avoidance and a 96%
reduction in conservatism for a learned robotic arm kinematic
model.

REFERENCES

[1] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in Proc. Int. Symp. Automated Technol. Verification Anal.,
2017, pp. 269–286.

[2] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in Proc. Comput. Aided Verification 29th Int. Conf. CAV, Heidelberg,
Germany, 2017, pp. 97–117.

[3] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety veri-
fication of deep neural networks,” in Computer Aided Verification,
R. Majumdar and V. Kunčak, Eds. Cham, Switzerland: Springer, 2017,
pp. 3–29.

[4] A. Lomuscio and L. Maganti, “An approach to reachability analy-
sis for feed-forward relu neural networks,” 2017. [Online]. Available:
arXiv:1706.07351.

[5] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2019.

[6] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “AI2: Safety and robustness certification of neural networks
with abstract interpretation,” in Proc. IEEE Symp. Security Privacy (SP),
May 2018, pp. 3–18.

[7] S. Gowal et al., “On the effectiveness of interval bound propaga-
tion for training verifiably robust models,” 2018. [Online]. Available:
arXiv:1810.12715.

[8] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2018.

[9] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and robust-
ness analysis of neural networks via quadratic constraints and semidef-
inite programming,” 2019. [Online]. Available: arXiv:1903.01287.

[10] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation func-
tions,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4939–4948.

[11] T. Weng et al., “Towards fast computation of certified robustness for
ReLU networks,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018,
pp. 5273–5282.

[12] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 10802–10813.

[13] B. G. Anderson, Z. Ma, J. Li, and S. Sojoudi, “Tightened convex
relaxations for neural network robustness certification,” 2020. [Online].
Available: arXiv:2004.00570.

[14] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set esti-
mation and verification for multilayer neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5777–5783, Nov. 2018.

[15] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in Proc. 27th
USENIX Security Symp. (USENIX Security), 2018, pp. 1599–1614.

[16] V. Rubies-Royo, R. Calandra, D. M. Stipanovic, and C. Tomlin,
“Fast neural network verification via shadow prices,” 2019. [Online].
Available: arXiv:1902.07247.

[17] W. Xiang, H.-D. Tran, X. Yang, and T. T. Johnson, “Reachable set
estimation for neural network control systems: A simulation-guided
approach,” IEEE Trans. Neural Netw. Learn. Syst., early access, May 14,
2020, doi: 10.1109/TNNLS.2020.2991090.

[18] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang, “A convex
relaxation barrier to tight robustness verification of neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 9832–9842.

[19] G. Singh, R. Ganvir, M. Püschel, and M. T. Vechev, “Beyond the single
neuron convex barrier for neural network certification,” in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 15072–15083.

[20] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning,
and C.-J. Hsieh, “Towards stable and efficient training of verifiably
robust neural networks,” 2019. [Online]. Available: arXiv:1906.06316,

[21] M. Everett, B. Lutjens, and J. P. How, “Certified adversarial robust-
ness for deep reinforcement learning,” 2020. [Online]. Available:
arXiv:2004.06496,

[22] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
2018, pp. 6252–6259.

[23] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2017,
pp. 285–292.

[24] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Madrid, Spain,
Sep. 2018, pp. 3052–3059.

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:55:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2020.2991090

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

