
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344447310

Robustness Analysis of Neural Networks via Efficient Partitioning: Theory and

Applications in Control Systems

Preprint · October 2020

CITATIONS

0
READS

139

3 authors:

Some of the authors of this publication are also working on these related projects:

PI Controller for Non-affine Systems View project

Path Planning and Controller for DARPA Urban Challenge View project

Michael Everett

Northeastern University

52 PUBLICATIONS 2,041 CITATIONS

SEE PROFILE

Golnaz Habibi

Rice University

26 PUBLICATIONS 154 CITATIONS

SEE PROFILE

Jonathan How

Massachusetts Institute of Technology

930 PUBLICATIONS 29,554 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jonathan How on 05 November 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344447310_Robustness_Analysis_of_Neural_Networks_via_Efficient_Partitioning_Theory_and_Applications_in_Control_Systems?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344447310_Robustness_Analysis_of_Neural_Networks_via_Efficient_Partitioning_Theory_and_Applications_in_Control_Systems?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PI-Controller-for-Non-affine-Systems?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Path-Planning-and-Controller-for-DARPA-Urban-Challenge?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Everett-2?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Everett-2?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Northeastern_University?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Everett-2?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Golnaz-Habibi-2?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Golnaz-Habibi-2?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rice-University?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Golnaz-Habibi-2?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-How?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-How?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Massachusetts-Institute-of-Technology?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-How?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-How?enrichId=rgreq-9507b127d6d663d90001760510bea10c-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0NzMxMDtBUzo5NTQ0OTk1MjI5MDQwNjhAMTYwNDU4MTgyODUzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Robustness Analysis of Neural Networks via Efficient Partitioning:
Theory and Applications in Control Systems

Michael Everett, Golnaz Habibi, Jonathan P. How

Abstract— Neural networks (NNs) are now routinely imple-
mented on systems that must operate in uncertain environ-
ments, but the tools for formally analyzing how this uncertainty
propagates to NN outputs are not yet commonplace. Computing
tight bounds on NN output sets (given an input set) provides
a measure of confidence associated with the NN decisions
and is essential to deploy NNs on safety-critical systems.
Recent works approximate the propagation of sets through
nonlinear activations or partition the uncertainty set to provide
a guaranteed outer bound on the set of possible NN outputs.
However, the bound looseness causes excessive conservatism
and/or the computation is too slow for online analysis. This
paper unifies propagation and partition approaches to provide
a family of robustness analysis algorithms that give tighter
bounds than existing works for the same amount of computation
time (or reduced computational effort for a desired accu-
racy level). Moreover, we provide new partitioning techniques
that are aware of their current bound estimates and desired
boundary shape (e.g., lower bounds, weighted `∞-ball, convex
hull), leading to further improvements in the computation-
tightness tradeoff. The paper demonstrates the tighter bounds
and reduced conservatism of the proposed robustness analysis
framework with examples from model-free RL and forward
kinematics learning.

I. INTRODUCTION

Neural networks (NNs) are ubiquitous across robotics for
perception, planning, and control tasks. While empirical per-
formance statistics can indicate that a NN has learned a use-
ful input-output mapping, there are still concerns about how
much confidence to associate with decisions resulting from a
learned system. One direction toward providing a confidence
measure is to consider how the various sources of uncertainty
in training/execution processes map to uncertainty in outputs
of trained NNs. Many of these uncertainties appear at the
NN input (e.g., from noisy/adversarially attacked sensing,
unknown initial conditions), thus this work focuses on the
problem of propagating input uncertainties through NNs to
bound the set of possible NN outputs online.

Analysis of how a set of possible inputs propagates
through a NN has an inherent tradeoff between computation
time and conservatism. Exact methods [1]–[6] are compu-
tationally intractable for online analysis, so we focus on
finding guaranteed outer bounds on the network outputs.
Most existing methods propagate the entire input set through
the NN – we refer to these as Propagators [7]–[12].

Although some of these propagators scale to high di-
mensional NNs, large input sets (e.g., from high state
uncertainty) induce massive conservatism, even for small

The authors are with the Aerospace Controls Laboratory at
the Massachusetts Institute of Technology, {mfe, ghabibi,
jhow}@mit.edu.

Partitioner
Analyzer

Propagator

Trained NN

Input Set Output Set

x0

x1

f(x)_0

f(x)_1

e.g., IBP, Fast-Lin, CROWN, SDP

e.g., Uniform, Sim-Guided, Greedy-Sim

Fig. 1: Robustness Analysis Architecture. This work efficiently
bounds the set of NN outputs for a given input set.

NNs. Partitioners [13]–[16] are a promising direction toward
propagating large input sets through NNs, particularly when
the number of uncertain NN inputs is relatively small, as
in many control systems. Nonetheless, current partitioners
spend excessive computational effort when refining cells,
have limited theoretical justification, and suffer from simple
propagation strategies.

The contributions of this work are: (i) a family of analysis
tools that provide tighter guaranteed bounds on possible NN
outputs for the same computational effort compared to the
state-of-the-art, (ii) two new partitioning algorithms that effi-
ciently refine the input set partition based on desired output
set shapes, (iii) theoretical justification for partitioning via
analytically quantifying the reduction in output set size, and
(iv) applications on control systems to improve a robust RL
agent’s navigation efficiency by 22% and reduce reachable
set estimation error by 96% for a robot arm.

II. BACKGROUND AND RELATED WORK

Problem Statement: Given a trained NN and a set of
possible NN inputs, the objective is to find the tightest
guaranteed over-approximation of the set of possible NN
outputs. The exact set of possible outputs is called the
NN’s reachable set. In general, finding the exact reachable
set is computationally intractable for reasonably sized NNs;
instead, the goal is to compute the over-estimate Ue such that
U ⊆ Ue for a given input set.

A. Propagators

Propagators estimate how the full input set moves through
the network, and they primarily differ in approximation
strategies of the nonlinear activation functions. At one ex-
treme, Interval Bound Propagation (IBP) [7] approximates
the output of each layer with a tight `∞ ball, leading
to conservative but fast-to-compute bounds of the final
layer. Convex relaxation-based techniques [17] often achieve
tighter bounds with more computation by approximating
nonlinear activations with linear bounds – some of these

ar
X

iv
:2

01
0.

00
54

0v
1

 [
cs

.L
G

]
 1

 O
ct

 2
02

0

Input Set Hidden Set Output Set

Layer 1 (Shear)

Layer 1 (Shear)

Layer 1 (Shear)

Layer 2 (Rotate)

Layer 2 (Rotate)

Layer 2 (Rotate)

Tighter Bounds
from Partitioning

Fig. 2: Partitioner Intuition. (Top) Large input sets cause loose
bounds on NN output sets, even for this simple 2-layer NN with
linear activations. (Bottom) Tighter bounds can be achieved by
partitioning the input set, propagating each cell through the NN,
and merging the output sets [13], [14].

can be solved in closed-form [10], [18]. Other propagators
provide tighter analysis at the cost of higher computation
time, including approaches based on QP/SDP [8], [9], and
convex relaxation refinements [19]. While this paper focuses
on analysis of trained NNs, several recent works consider
the orthogonal problem of how to use these propagation
techniques during training [20].

B. Partitioners

Partitioners break the input set into smaller regions, com-
pute the reachable set of each small region, and return the
total reachable set as the union of each smaller region’s
reachable set. The idea is depicted in Fig. 2 for a simple NN
with linear activations. In the top row (without partitioning)
IBP operates on the full input set, leading to excessive
conservatism in the final output bound (top right: large
red dashes vs. red shaded region). The bottom row shows
how IBP on two halves of the input set leads to a tighter
approximation of the output set. This volume reduction is
quantified analytically in Section III-B.

The key difference between partitioning approaches is the
strategy for how to split the input set. Some works make
one bisection of the input set [15], [16]; [13] splits the input
set into a uniform grid. The current state-of-art partitioner,
a Simulation-Guided approach (SG) [14], uses a partitioning
strategy where Monte Carlo samples of the exact NN output
are used as guidance for efficient partitioning of the input
set, reducing the amount of computation required for the
same level of bound tightness. SG used IBP to compute
output sets, and the two ideas of Partitioners and Propagators
have been developed separately toward a similar objective.
This work addresses key gaps in the partitioning literature:
we unify Partitioners with state-of-art Propagators for better
performance, propose new partitioners that are flexible in
the desired output set shape, and analyze the theoretical
reduction in conservatism. We then show how improvements
in robustness analysis map directly to reduced conservatism
in control tasks.

III. APPROACH

This section introduces the overall architecture, describes
our new partitioning algorithms, then analyzes the reduction

𝑑"

𝑑#

[𝜂#] η′ '

η′ (

η′)

η′ *

η′ *

Fig. 3: (Left) GSG selects from candidates in M : the input set
corresponding to the magenta output set is chosen for refinement,
because d2 > d1 (where [usim] is the black box). (Right) AGSG
decomposition [η] \ [ηe] into four new intervals [η′]1,2,3,4.

in conservatism from partitioning.
Figure 1 shows a schematic of the proposed framework

with its three nested modules: Analyzer, Partitioner and Prop-
agator. The Analyzer is aware of the desired output shape
(e.g., lower bounds, `∞-ball, convex hull) and termination
condition (e.g., computation time, number of Propagator
calls, improvement per step). The Analyzer specifies a Prop-
agator (e.g., CROWN [10], IBP [7], SDP [9], Fast-Lin [18])
and a Partitioner (e.g., Uniform [13], Sim-Guided [14] or the
algorithms proposed in this section). The Partitioner decides
how to split the input set into cells, and the Propagator is used
by the Partitioner to estimate the output set corresponding to
an input set or its cells.

A. Greedy Simulation-Guided Partitioning

The state-of-art partitioning algorithm, SG [14], tightens
IBP’s approximated boundary with the following key steps:
(1) acquire N Monte Carlo samples of the NN outputs to
under-approximate the reachable set as the interval [usim],
(2) using IBP, compute the reachable set of the full input
set and add this set to a stack M , and (3) (iteratively) pop
an element from M , and either stop refining that cell if
its computed reachable set is within [usim], or bisect the
cell, compute each bisection’s reachable set, and add both
to the queue. The SG algorithm terminates when one of the
cell’s dimensions reaches some threshold, and the returned
reachable set estimate is the weighted `∞-ball that surrounds
the union of all of the cells remaining on the queue and [usim].

We propose a partitioning algorithm with better bound
tightness for the same amount of computation, called
Greedy-Sim-Guided (GSG), by modifying the choice of
which cell in M to refine at each step. Rather than popping
the first element from the stack (LIFO) as in SG, GSG refines
the input cell with corresponding output range that is furthest
outside the output boundary of the N samples (Fig. 3).
This heuristic gives the opportunity to reduce the boundary
estimate at each iteration. While the core SG algorithm
remains the same, the greedy strategy can greatly improve
the algorithm’s performance.

The Adaptive-Greedy-Sim-Guided (AGSG) algorithm ex-
tends GSG’s initialization procedure to reduce wasted com-
putation time refining unimportant input regions. After com-
puting [usim], AGSG initializes [ηe] as the input point whose
output is at the middle of simulated outputs. This cell is
repeatedly expanded with step size es as long as its output

set (computed by a Propagator) remains inside [usim]. The
remaining input is decomposed into a set of disjoint intervals
[η′]i. Fig. 3 shows this decomposition in 2D, which creates
four new intervals [η′]1,2,3,4 (some of which could be empty)
of rectangle shape1. The new intervals [η′]i are passed to
GSG as the initial M . The output set boundary estimate
returned by AGSG merges that GSG output and the initial
expanded cell’s output boundary.

Boundary Specification: While SG only computes a
`∞-ball over-approximation, GSG/AGSG optimize for the
desired output set shape. For example, if the objective is
to find a tight convex hull over-approximation, GSG/AGSG
modify the idea from Fig. 3 to select the input set that is
furthest from the convex hull boundary (instead of the `∞-
ball, as in SG [14]).

B. Analysis of Partitioning

This section quantifies the reduction in conservatism from
partitioning, as measured by output set volume. While [14]
proves that smaller input intervals lead to a smaller output
intervals, that analysis did not consider unions of output sets.

Overview: For a given input set, we first compute the
volume of the output set when the full input set is propagated
through a layer (using IBP [7]), then we compute the volume
of the union of two output sets corresponding to two pieces
of the input set. We then quantify the volume of the full
output set and the union of the two pieces. The estimate of
the output set’s volume (as the union of output sets) is shown
to improve from repeated splitting of the input set.

Consider a single NN layer with weight W ∈ Rnout×nin .

Definition III.1. Let the input set be described by the nin-
parallelotope, P(U) ∈ Rnin , with generating vectors,

U = [u1 u2 . . . unin] ∈ Rnin×nin . (1)

Definition III.2. The pre-activation set of the layer is a nin-
parallelotope, P(V) ∈ Rnout , with

V = WU = [v1 v2 . . . vnin] ∈ Rnout×nin . (2)

Definition III.3. Let B(V) denote the smallest axis-aligned
hyperrectangle2 containing P(V), i.e., the Cartesian product
of nout intervals, each of which is defined by the minimal
and maximal value of the corresponding coordinate for the
vertices of P(V).

Thus, B(V) has nout-volume,

Vol(B(V)) =

nout∏
i=1

nin∑
j=1

|vj,i| =
nout∏
i=1

li, (3)

where vj,i is the value of vector vj in i-th dimension.
Consider splitting the input set into two parts, where we

choose to split u1, w.l.o.g., by a scalar ratio r ∈ [0, 1].

1Extension of the decomposition to higher dims. is left as future work.
2See https://en.wikipedia.org/wiki/Minimum_bounding_box.

Definition III.4. The “left” and “right” input parallelo-
topes, P(UL),P(UR), are described by the generating
vectors (UR’s corner is offset from UL’s corner by ru1),

UL = [ru1 u2 . . . unin];U
R = [(1− r)u1 u2 . . . unin]. (4)

Lemma III.5. Given a single layer of a NN, with weights W
and input set P(U) as in Definition III.1, partitioning P(U)
at u1 by ratio r as in Definition III.4 reduces the volume of
the pre-activation set by (11).

Proof. Using Definitions III.2 and III.4, the “left” and “right”
pre-activation sets, P(VL),P(VR) have generating vectors,

VL = WUL; VR = WUR (5)

Using Definition III.3, P(VL),P(VR) can each be bounded
by a hyperrectangle, denoted as B(VL), B(VR), respec-
tively, with volumes,

Vol(B(VL)) =

nout∏
i=1

(r|v1,i|+ zi) (6)

Vol(B(VR)) =

nout∏
i=1

((1− r)|v1,i|+ zi) (7)

using the notation zi =
∑nout
j=2 |vj,i|.

Because UL and UR have nin − 1 vectors in common,
B(VL) and B(VR) both contain the hyperrectangle with
diagonal d = v2 + . . .+ vnin . Their intersection’s volume is

Vol(B(VL) ∩ B(VR)) =

nout∏
i=1

zi =

nout∏
i=1

nout∑
j=2

|vj,i|, (8)

and their union’s volume is

Vol(B(VL) ∪ B(VR)) =

nout∏
i=1

(r|v1,i|+ zi) (9)

+

nout∏
i=1

((1− r)|v1,i|+ zi)−
nout∏
i=1

zi.

The difference in volume between B(V) and the union of
the two pre-activation sets, B(VL) ∪ B(VR), is,

Vred = Vol(B(V))−Vol(B(VL ∪VR)) (10)

=

nout∑
k=2

(
1− rk − (1− r)k

)

·

(
nout

)∑
i=1

∏
j∈Ci

|v1,j |

 ∏
t∈C\Ci

zt

 , (11)

where C = {1, . . . , nout}, Pk(C) is the set containing elements of
the power set of C with exactly k elements, and each element of
Pk(C) is denoted Ci.

The volume of pre-activation space in consideration re-
duces with each input partition when Vred > 0. Note that
Vred ≥ 0 (partitioning cannot hurt), since no vertex of P(VL)
or P(VR) can exceed a vertex of P(V).

Corollary III.6. For nout = 2, (11) reduces to
Vred = 2r(1− r) (|v1,1| · |v1,2|).

https://en.wikipedia.org/wiki/Minimum_bounding_box

Corollary III.7. For nout = 2 or 3, the optimal r is 1
2 .

Lemma III.8. For r = 1
2 and nout = 2, the total volume

reduction from repeatedly splitting u1 is |W:,1·u1||W:,2·u1|.

Proof. Corollary III.6 is written in terms of u1 as

Vred(u1) =
1

2
(|W:,1 · u1||W:,2 · u1|) . (12)

Say we bisect each of the two cells created in the first split;
each will provide a further volume reduction of

Vred(
1

2
u1) =

(
1

2

)2

Vred(u1). (13)

On the i-th round of bisecting every cell in the input set,

Vred(

(
1

2

)i−1

u1) =

((
1

2

)i−1
)2

Vred(u1), (14)

per cell, with 2i cells providing this volume reduction.
Thus, adding up all the volume reductions up to and including

the i-th round, the total volume reduction is

Vred,i(u1) =

i∑
j=1

2j
((

1

2

)j−1
)2

Vred(u1) (15)

=

i∑
j=1

(
1

2

)j−1

Vred(u1) (16)

In the limit of partitioning one dimension over and over,

Vred,∞(u1) = lim
i→∞

Vred,i(u1) = 2 · Vred(u1). (17)

This analysis justifies partitioning as a strategy to reduce
output set volume/conservatism; extensions for nonlinear
activations and N -layer NNs are left for future work.

IV. EXPERIMENTAL RESULTS

This section shows example partitions, applies the ideas to
a robotic arm task, demonstrates better closed-loop behavior
in collision avoidance, shows an ability to scale to vari-
ous network sizes/architectures, and measures improvement
along the time vs. tightness tradeoff.

A. Partitions for Different Output Shapes

The ability to partition efficiently for different output
shapes is shown in Fig. 4 for a randomly initialized NN
with 2 inputs, 2 outputs, and 50 nodes in hidden layer, i.e.,
(2, 50, 2), with ReLU activations, and input set [0, 1]×[0, 1].
Each of (a-c) uses GSG with CROWN for 2 seconds. Recall
that SG [13] would only return one output set for (a-c).

B. Comparisons to Baselines & Ablation Study

Four partitioning algorithms are compared in Fig. 5 for
the same (2, 50, 2) NN and input set. Each analyzer runs
for 2 seconds to compute an estimated output set. The true
output set is obtained by exhaustively sampling from the
input space, and error is reported as percent extra area,
Aestimate−Atrue

Atrue
. The proposed partitioning algorithms GSG (c)

and AGSG (d) use only 280 and 275 partitions respectively,
and their approximation error is 0.018, which indicates more

(a) Lower Bounds (b) `∞-ball (c) Convex Hull

Fig. 4: Input & Output Sets for Different Output Set Shapes. The
estimated bounds (black) are “tight” when they are close to the
bounds from exhaustive sampling (dashed red). The GSG partitioner
with CROWN [10] propagator ran for 2 sec.

(a) SG+IBP [14]
Partitions: 1021; Error: 0.35

(b) SG+CROWN
Partitions: 387; Error: 0.09

(c) GSG+CROWN
Partitions: 280; Error: 0.02

(d) AGSG+CROWN
Partitions: 275; Error: 0.02

Fig. 5: Input partitions for a random (2, 50, 2) ReLU NN analyzed
for 2 seconds. New methods (b, c, d) reduce the number of input
partitions and output set (convex hull) error.

than 79% improvement over SG -CROWN (b) and 95% over
the state of the art SG-IBP [14]. In addition to quantitative
improvement, Fig. 5 illustrates the input set partitions of each
algorithm, which highlights how GSG refines different/fewer
cells as SG, and that AGSG does not strictly make bisections.

C. Applications in Robotics and Control

1) Reachable Set Analysis of Robotic Arm: Borrowing
the robotic arm model from [13], [14], we compare our
algorithm to [14] for reachable set estimation of a forward
kinematics model. Fig. 6a shows the 2 DOF robot arm, with
input (θ1, θ2) as joint angles and output (x, y) as end effector
position. The nonlinear dynamics are modeled by a small
(2, 5, 2) NN with tanh activations. We assume a time limit of
2 sec to approximate the convex hull of end effector positions
from the set of joint angles (θ1, θ2) ∈ [π3 ,

2π
3] × [π3 ,

2π
3].

As shown in Fig. 6a, AGSG-CROWN reduces the error
from [14] by 96%. Only switching the partitioner (SG-IBP
vs. (A)GSG-IBP) still achieves 80% error reduction. The
estimated boundary is shown in (c, d).

2) Multiagent Collision Avoidance: Deep RL methods
are popular in multiagent collision avoidance literature [21],

�
θ

�
θ

�
��� =

�
�� =

� � �� �

(a) Robotic arm [13]

Algorithm Stats
(Prop. + Part.) Error Prop. Calls Partitions
IBP + SG [14] 0.216 1969 985

IBP + GSG 0.042 869 435
IBP + AGSG 0.040 847 425
Fast-Lin + SG 0.134 593 297

Fast-Lin + GSG 0.009 473 237
Fast-Lin + AGSG 0.008 461 232

CROWN + SG 0.134 587 294
CROWN + GSG 0.009 467 234

CROWN + AGSG 0.008 453 228

(b) Comparison of Algorithms

(c) SG-IBP [14] (d) AGSG-CROWN

Fig. 6: Reachable set estimate of a robotic arm. GSG/AGSG-
CROWN achieves 96% lower error than [14] (2 sec. computation).

[22], but they rarely account for measurement uncertainty.
[23] proposed a certifiably robust deep RL algorithm, but the
performance degraded with large input uncertainty (εrob in
that work), partially due to overly conservative lower bounds
from Fast-Lin [18].

The robust-but-conservative behavior caused by
CROWN/Fast-Lin is shown in Fig. 7a (±0.5m uncertainty
on the blue agent’s position at each timestep). By instead
using GSG-CROWN to estimate worst-case Q-values
(Fig. 7b), the orange agent reaches the goal much
faster while still avoiding the blue agent. This improved
behavior is a result of tighter estimates of worst-case
Q-values, shown at a single timestep in Fig. 7c. For this
experiment, a (11, 64, 64, 11) DQN (11 states & 11
discrete actions) was trained with perfect measurements
in the gym-collision-avoidance environment [24].
Furthermore, this application is a case where only lower
bounds on the NN outputs are needed, which motivates the
use of our proposed algorithms that can focus computation
toward this objective.

D. Scalability to Larger NNs

The proposed algorithms scale to bigger NNs as shown
in Table I and improve on existing methods by orders of
magnitude. For a given number of propagator calls (100),
the average error (close to 0 is best) of 10 random NNs
is reported for 4 different architectures (small, deep, higher
dimension, LSTM), and for different boundary types. The (4,
100, 10) NN has uncertainty on the full 4D input set and the
LSTM uses 2D uncertainty on the last timestep. While this
work’s approaches scale well to deep NNs and various ar-
chitectures, future work should consider the challenges from
settings with even higher dimensional input uncertainties.

E. Computation-Performance Tradeoff

Throughout this paper, we have leveraged the idea of
partitioning the input set to tighten the approximated bound-

(a) CROWN (highly conservative)

(b) GSG-CROWN (less conservative)
(c) Worst-Case Q-Values

(Model-Free RL)

Fig. 7: Multiagent collision avoidance under uncertainty. In (a), a
robust but conservative trajectory from a robust RL formulation [23]
that used CROWN/Fast-Lin [10] to estimate worst-case Q-values
under uncertainty on obstacle positions. In (b), the proposed GSG-
CROWN algorithm enables the orange agent to reach its goal faster
(7 vs. 9 sec) while still avoiding the blue agent. This improved
behavior is a result of tighter estimates of worst-case Q-values,
shown at a single timestep in (c) (purple → green).

CROWN [10]
SDP [9]

SG-IBP [14]
(Dashed Blue)

Better

Fig. 8: Improvement in Computation Time vs. Accuracy Tradeoff.
Colors indicate Propagator; markers indicate Partitioner. GSG-
CROWN (orange triangles) requires ∼ 5× less computation for
the same accuracy as SG-IBP [14]. This work unified partitioning
and propagation ideas to give many methods that exceed the prior
state-of-art.

ary. To empirically show that bounds tighten with additional
computational effort, we plot several combinations of par-
titioners and propagators in Fig. 8 over time. Each color
corresponds to a propagator (IBP, CROWN, SDP) and each
marker corresponds to a partitioner (SG, GSG, AGSG). This
result uses the robotic arm model from before, but with
ReLU activations.

A first key takeaway is that additional computation time
leads to reduced error (increased tightness)3. Another key
takeaway is that our framework provides many algorithms
that exceed the performance of previous state-of-art algo-
rithms [9], [10], [14]. Except the blue dashed line [14] and
leftmost green/orange points [9], [10], all of the options are
new algorithms proposed by this work. The analysis provided
in the plots informs the choice of propagator and partitioner
for a particular application with, say, a desired level of accu-
racy or budgeted resources (memory/computation). Overall,

3Comp. Time is reported only for propagator calls, which should dominate
computation for larger NNs.

NN Algorithm Boundary Type
(Prop. + Part.) Lower Bounds `∞ -ball Convex Hull

(2
,1

00
,2

)
IBP [7] 1.50 7.77 × 101 9.06

IBP + SG [14] 2.47 × 10−1 4.06 1.49

IBP + GSG 1.70 × 10−1 3.44 1.44

Fast-Lin [11] 2.78 × 10−1 4.62 1.90

Fast-Lin + SG 1.70 × 10−3 1.70 × 10−2 1.12 × 10−1

Fast-Lin + GSG 3.94 × 10−3 5.48 × 10−2 7.23 × 10−2

CROWN [10] 2.15 × 10−1 3.29 1.55

CROWN + SG 1.34 × 10−3 1.23 × 10−2 1.09 × 10−1

CROWN + GSG 3.49 × 10−3 5.32 × 10−2 6.65 × 10−2

SDP [9] 1.20 × 10−1 1.90 1.06

(2
,1

00
,1

00
,1

00
,1

00
,

10
0,

10
0,

2)

IBP [7] 1.69 × 102 8.17 × 109 1.07 × 105

IBP + SG [14] 3.32 × 101 3.16 × 108 2.10 × 104

IBP + GSG 3.07 × 101 2.67 × 108 1.93 × 104

Fast-Lin [11] 2.32 1.57 × 106 1.48 × 103

Fast-Lin + SG 2.65 × 10−4 3.83 × 10−1 2.91 × 10−1

Fast-Lin + GSG 9.32 × 10−5 2.12 × 10−1 2.30 × 10−1

CROWN [10] 8.96 × 10−1 2.42 × 105 5.74 × 102

CROWN + SG 1.61 × 10−4 2.03 × 10−1 1.91 × 10−1

CROWN + GSG 5.40 × 10−5 1.18 × 10−1 1.65 × 10−1

(4
,1

00
,1

0)

IBP [7] 3.11 × 101 1.41 × 1017 -
IBP + SG [14] 1.40 × 101 6.89 × 1013 -

IBP + GSG 1.33 × 101 4.37 × 1013 -
Fast-Lin [11] 6.18 5.95 × 1010 -

Fast-Lin + SG 8.24 × 10−1 7.81 × 103 -
Fast-Lin + GSG 7.44 × 10−1 4.59 × 103 -
CROWN [10] 4.51 4.01 × 109 -

CROWN + SG 5.60 × 10−1 8.17 × 102 -
CROWN + GSG 5.00 × 10−1 5.52 × 102 -

L
ST

M
((

8,
8)

,
64

,2
) IBP [7] 1.56 × 10−2 1.16 × 102 1.13 × 101

IBP + SG [14] 2.44 × 10−3 5.55 1.83

IBP + GSG 1.80 × 10−3 4.90 1.80

TABLE I: Approximation Error (closer to 0 is better) for four
different types of NNs: small, deep, higher dimension, and LSTM.
Reported values are average error across 10 randomly initialized
NNs after up to 100 propagator calls.

for this task GSG-CROWN almost always provides the best
accuracy vs. computation time tradeoff, requiring ∼ 5× less
computation for the same accuracy as SG-IBP [14].

V. CONCLUSION

This work proposed a suite of algorithms for online
robustness analysis of NNs that can provide confidence
in NN decisions under uncertainty. We build on recent
work for handling large uncertainties by proposing new,
flexible partitioning algorithms and give theoretical rationale
for partitioning as a strategy for reducing conservatism.
Furthermore, we show how recent methods that efficiently
relax NN nonlinearities can be unified with partitioning in
a single framework, which provides many new state-of-art
algorithmic choices for robotics applications. Along with
showing improved aggregate performance on random NNs
with various sizes/architectures, we show how these ideas
can be applied to other learning tasks for control systems,
showing a 22% improvement in robust RL for multiagent
collision avoidance and a 96% reduction in conservatism for
a learned robotic arm kinematic model.

ACKNOWLEDGMENT
This work was supported by Ford Motor Company.

REFERENCES

[1] R. Ehlers, “Formal verification of piece-wise linear feed-forward
neural networks,” in ATVA, 2017.

[2] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochen-
derfer, “Reluplex: An efficient SMT solver for verifying deep neural
networks,” in Computer Aided Verification - 29th International Confer-
ence, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part I, pp. 97–117, 2017.

[3] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Computer Aided Verification (R. Majum-
dar and V. Kunčak, eds.), (Cham), pp. 3–29, Springer International
Publishing, 2017.

[4] A. Lomuscio and L. Maganti, “An approach to reachability analysis
for feed-forward relu neural networks,” CoRR, vol. abs/1706.07351,
2017.

[5] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” in International
Conference on Learning Representations (ICLR), 2019.

[6] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai2: Safety and robustness certification of neural
networks with abstract interpretation,” in 2018 IEEE Symposium on
Security and Privacy (SP), pp. 3–18, May 2018.

[7] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, “On the effectiveness of
interval bound propagation for training verifiably robust models,”
arXiv preprint arXiv:1810.12715, 2018.

[8] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses
against adversarial examples,” in International Conference on Learn-
ing Representations (ICLR), 2018.

[9] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” arXiv preprint arXiv:1903.01287, 2019.

[10] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Effi-
cient neural network robustness certification with general activation
functions,” in Advances in neural information processing systems,
pp. 4939–4948, 2018.

[11] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning,
and I. Dhillon, “Towards fast computation of certified robustness for
relu networks,” in International Conference on Machine Learning
(ICML), 2018.

[12] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems, pp. 10802–10813, 2018.

[13] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set
estimation and verification for multilayer neural networks,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 11,
pp. 5777–5783, 2018.

[14] W. Xiang, H.-D. Tran, X. Yang, and T. T. Johnson, “Reachable set
estimation for neural network control systems: A simulation-guided
approach,” IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[15] B. G. Anderson, Z. Ma, J. Li, and S. Sojoudi, “Tightened convex
relaxations for neural network robustness certification,” arXiv preprint
arXiv:2004.00570, 2020.

[16] V. Rubies-Royo, R. Calandra, D. M. Stipanovic, and C. Tomlin,
“Fast neural network verification via shadow prices,” arXiv preprint
arXiv:1902.07247, 2019.

[17] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang, “A convex
relaxation barrier to tight robustness verification of neural networks,”
in Advances in Neural Information Processing Systems, pp. 9835–
9846, 2019.

[18] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning,
I. S. Dhillon, and L. Daniel, “Towards fast computation of certified
robustness for relu networks,” arXiv preprint arXiv:1804.09699, 2018.

[19] G. Singh, R. Ganvir, M. Püschel, and M. Vechev, “Beyond the single
neuron convex barrier for neural network certification,” in Advances
in Neural Information Processing Systems, pp. 15098–15109, 2019.

[20] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning,
and C.-J. Hsieh, “Towards stable and efficient training of verifiably
robust neural networks,” arXiv preprint arXiv:1906.06316, 2019.

[21] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6252–6259, IEEE, 2018.

[22] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE international conference on robotics
and automation (ICRA), pp. 285–292, IEEE, 2017.

[23] M. Everett, B. Lutjens, and J. P. How, “Certified adversarial robustness
for deep reinforcement learning,” arXiv preprint arXiv:2004.06496,
2020.

[24] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), (Madrid, Spain), Sept. 2018.

View publication stats

https://www.researchgate.net/publication/344447310

	I Introduction
	II Background and Related Work
	II-A Propagators
	II-B Partitioners

	III Approach
	III-A Greedy Simulation-Guided Partitioning
	III-B Analysis of Partitioning

	IV Experimental Results
	IV-A Partitions for Different Output Shapes
	IV-B Comparisons to Baselines & Ablation Study
	IV-C Applications in Robotics and Control
	IV-C.1 Reachable Set Analysis of Robotic Arm
	IV-C.2 Multiagent Collision Avoidance

	IV-D Scalability to Larger NNs
	IV-E Computation-Performance Tradeoff

	V Conclusion
	References

