
Received November 7, 2021, accepted November 23, 2021, date of publication December 6, 2021,
date of current version December 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133370

Reachability Analysis of Neural Feedback Loops
MICHAEL EVERETT , (Member, IEEE), GOLNAZ HABIBI, (Member, IEEE),
CHUANGCHUANG SUN, (Member, IEEE), AND JONATHAN P. HOW , (Fellow, IEEE)
Aerospace Controls Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Corresponding author: Michael Everett (mfe@mit.edu)

This work was supported in part by Ford Motor Company, in part by ARL DCIST under Cooperative Agreement
W911NF-17-2-0181, and in part by Scientific Systems Company, Inc., under Research Agreement SC-1661-04.
Code: https://github.com/mit-acl/nn_robustness_analysis.

ABSTRACT Neural Networks (NNs) can provide major empirical performance improvements for closed-
loop systems, but they also introduce challenges in formally analyzing those systems’ safety properties.
In particular, this work focuses on estimating the forward reachable set of neural feedback loops (closed-loop
systems with NN controllers). Recent work provides bounds on these reachable sets, but the computationally
tractable approaches yield overly conservative bounds (thus cannot be used to verify useful properties), and
the methods that yield tighter bounds are too intensive for online computation. This work bridges the gap
by formulating a convex optimization problem for the reachability analysis of closed-loop systems with NN
controllers. While the solutions are less tight than previous (semidefinite program-based) methods, they are
substantially faster to compute, and some of those computational time savings can be used to refine the
bounds through new input set partitioning techniques, which is shown to dramatically reduce the tightness
gap. The new framework is developed for systems with uncertainty (e.g., measurement and process noise)
and nonlinearities (e.g., polynomial dynamics), and thus is shown to be applicable to real-world systems.
To inform the design of an initial state set when only the target state set is known/specified, a novel algorithm
for backward reachability analysis is also provided, which computes the set of states that are guaranteed to
lead to the target set. The numerical experiments show that our approach (based on linear relaxations and
partitioning) gives a 5× reduction in conservatism in 150× less computation time compared to the state-of-
the-art. Furthermore, experiments on quadrotor, 270-state, and polynomial systems demonstrate themethod’s
ability to handle uncertainty sources, high dimensionality, and nonlinear dynamics, respectively.

INDEX TERMS Reachability analysis, neural networks, deep learning, safe learning, verification.

I. INTRODUCTION
Neural Networks (NNs) are pervasive in many fields because
of their ability to express highly general input-output relation-
ships, such as for perception, planning, and control tasks in
robotics. However, before deploying NNs on safety-critical
systems, there must be techniques to guarantee that the
closed-loop behavior of systems with NNs, which we call
neural feedback loops (NFLs), will meet desired specifica-
tions. The goal of this paper is to develop a framework for
guaranteeing that systems with NN controllers will reach
their goal states while avoiding undesirable regions of the
state space, as in Fig. 1.

Despite the importance of analyzing closed-loop behav-
ior, much of the recent work on formal NN analysis

The associate editor coordinating the review of this manuscript and

approving it for publication was Ángel F. García-Fernández .

FIGURE 1. Forward reachability analysis. The objective is to compute blue
sets Rt (X0), to ensure a system starting in X0 (yellow) ends in G (green)
and avoids A0,A1 (red). This is challenging for systems with NN control
policies.

has focused on NNs in isolation (e.g., for image
classification) [1]–[6], with an emphasis on efficiently

163938 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9377-6745
https://orcid.org/0000-0001-8576-1930
https://orcid.org/0000-0002-6471-8455

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

relaxing NN nonlinearities [7]–[13]. On the other hand,
closed-loop system reachability has been studied for decades,
but traditional approaches, such as Hamilton-Jacobi meth-
ods [14], [15], do not consider NNs in the loop.

Several recent works [16]–[21] propose methods that com-
pute forward reachable sets of NFLs. A key challenge is in
maintaining computational efficiency while still providing
tight bounds on the reachable sets. In addition, large initial
state sets present challenges as the underlying NN relaxations
become loose, leading to loose reachable set estimates. The
literature also typically assumes perfect knowledge of system
dynamics, with no stochasticity. Furthermore, the literature
focuses on forward reachability analysis (what states could
the system end in, starting from a given X0?), but backward
reachability analysis (what states can the system start from,
to end in a given XT ?) is an equally important problem in
safety analysis. While forward and backward reachability
differ only by a change of variables in classical systems [15],
[22], both the nonlinearities and matrix dimensions of NN
controllers raise fundamental challenges that prevent propa-
gating sets backward through a NFL.

To address these challenges, this work’s contributions
include:
• A linear programming-based formulation of forward
reachability analysis for NFLs, which provides a
computationally efficient method for verifying safety
properties,

• The use of input set partitioning techniques to provide
tight bounds on the reachable sets despite large initial
state sets,

• The consideration of measurement noise, process noise,
and nonlinear dynamics, which improves the applicabil-
ity to real systems with uncertainty, and

• A framework for backward reachability analysis of
NFLs, which enables estimating which starting states
will lead to a target set despite non-invertible NNweight
matrices and activations.

Numerical experiments show that the new method provides
5× better accuracy in 150× less computation time compared
to [21] and that the method can handle uncertainty sources,
high dimensionality, and nonlinear dynamics via applications
on quadrotor, 270-state, and polynomial systems.

This article extends our conference paper [23] by providing
an improved problem formulation, notation, and algorithmic
details. It also includes:
• A closed-form solution to provide an order-of-
magnitude computational speedup for the same bounds
in §IV-E,

• An extension of state-of-the-art partitioning techniques
to the NFL setting in §V,

• Formulations that handle nonlinearities (control limits
and polynomial terms) in the dynamics in §VI,

• A framework for backward reachability analysis in §VII.
Open-source software implementations of this paper’s

algorithms and results can be found at https://github.com/mit-
acl/nn_robustness_analysis.

FIGURE 2. Neural Feedback Loop. Many real world deployments of NNs
are part of complex, closed-loop systems (e.g., robots with learned
policies take actions that modify the world state and influence future
observations).

II. RELATED WORK
Related work on reachability analysis can be categorized into
works on NNs in isolation, closed-loop systems without NNs,
and closed-loop systems with NNs. For instance, machine
learning literature includesmanymethods to verify properties
of NNs, often motivated by defending against adversarial
examples [24]. These methods broadly range from exact
[2] to tight [13] to efficient [10] to fast [7]. Although these
tools are not designed for closed-loop systems, the NN relax-
ations from [10] provide a key foundation here.

For closed-loop systems, reachability analysis is a stan-
dard component of safety verification. Modern methods
include Hamilton-Jacobi Reachability methods [14], [15],
SpaceEx [25], Flow* [26], CORA [27], and C2E2 [28], [29],
but these do not account for NN control policies. Orthogo-
nal approaches that do not explicitly estimate the system’s
forward reachable set, but provide other notions of safety,
include Lyapunov function search [30] and control barrier
functions (CBFs) [31].

Recent reachability analysis approaches that do account for
NN control policies face a tradeoff between computation time
and conservatism. [16]–[18] use polynomial approximations
of NNs to make the analysis tractable. Most works consider
NNs with ReLU approximations, whereas [19] considers
sigmoidal activations. [20], [32] introduce conservatism by
assuming the NN controller could output its extreme values
at every state. Most recently, [21] formulated the problem as
a SDP, called Reach-SDP. This work builds on both [20], [21]
and makes the latter more scalable by re-formulating the SDP
as a linear program, introduces sources of uncertainty in the
closed-loop dynamics, and shows further improvements by
partitioning the input set.

III. PRELIMINARIES
A. CLOSED-LOOP SYSTEM DYNAMICS
Consider a discrete-time linear time-varying system,

xt+1 = Atxt + Btut + ct + ωt
yt = CT

t xt + νt , (1)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny are state, control, and
output vectors, At , Bt , Ct are known system matrices, ct ∈
Rnx is a known exogenous input, and ωt ∼ � and νt ∼ N

VOLUME 9, 2021 163939

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

are process andmeasurement noises sampled at each timestep
from unknown distributions with known, finite support (i.e.,
ωt ∈ [ωt , ω̄t], νt ∈ [νt , ν̄t] element-wise).

We assume an output-feedback controller ut = π (yt)
parameterized by an m-layer feed-forward NN, optionally
subject to control constraints, ut ∈ Ut . We denote the
closed-loop system with dynamics (1) and control policy π
as

xt+1 = f (xt ;π). (2)

This NFL is visualized in Fig. 2. At each timestep, the
state x enters the perception block and is perturbed by sensor
noise ν to create observation y. The observation is fed into the
learned policy, which is a NN that selects the control input u.
The control input enters the plant, which is defined byA,B, c
matrices and subject to process noise ω. The output of the
plant is the state vector at the next timestep.

B. REACHABLE SETS
For the closed-loop system (2), we denoteRt (X0) the forward
reachable set at time t from a given set of initial conditions
X0 ⊆ R

nx , which is defined by the recursion

Rt+1(X0) = f (Rt (X0);π), R0(X0) = X0. (3)

C. FINITE-TIME REACH-AVOID VERIFICATION PROBLEM
The finite-time reach-avoid property verification problem is
defined as follows: Given a goal set G ⊆ Rnx , a sequence
of avoid setsAt ⊆ R

nx , and a sequence of reachable set esti-
matesRt ⊆ R

nx , determining that every state in the final esti-
mated reachable set will be in the goal set and any state in the
estimated reachable sets will not enter an avoid set requires
computing set intersections, VERIFIED(G,A0:N ,R0:N) ≡
RN ⊆ G &Rt ∩At = ∅,∀t ∈ {0, . . . ,N }.

In the case of our nonlinear closed-loop system (2), where
computing the reachable sets exactly is computationally
intractable, we can instead compute outer-approximations of
the reachable sets, R̄t (X0) ⊇ Rt (X0). This is useful if the
finite-time reach-avoid properties of the system as described
by outer-approximations of the reachable sets are verified,
because that implies the finite-time reach-avoid properties of
the exact closed loop system are verified as well. Tight outer-
approximations of the reachable sets are desirable, as they
enable verification of tight goal and avoid set specifications,
and they reduce the chances of verification being unsuccess-
ful even if the exact system meets the specifications.

D. CONTROL POLICY NEURAL NETWORK STRUCTURE
Using notation from [10], for them-layer neural network used
in the control policy, the number of neurons in each layer is
nl, ∀l ∈ [m], where [a] denotes the set {1, 2, . . . , a}. Let the
l-th layer weightmatrix beW(l)

∈ Rnl×nl−1 and bias vector be
b(l) ∈ Rnl , and let Fl : Rnx → Rnl be the operator mapping
from network input (measured output vector yt) to layer l.
We have Fl(yt) = σ (W(l)Fl−1(yt) + b(l)),∀l ∈ [m − 1],
where σ (·) is the coordinate-wise activation function. The

framework applies to general activations, including ReLU,
σ (z) = max(0, z). The network input F0(yt) = yt produces
the (unclipped) control input,

ut = π (yt) = Fm(yt) =W(m)Fm−1(yt)+ b(m). (4)

E. NEURAL NETWORK ROBUSTNESS VERIFICATION
Akey step in quickly computing reachable sets of the NFL (2)
is to relax the nonlinear constraints induced by the NN’s
nonlinear activation functions. The relaxation converts each
nonlinearity into a linear upper and lower bound, where
each bound holds within the known range of inputs to the
activation.

To represent the range of inputs to the activation functions,
we first define the ε-ball. Denote the ε-ball (also called the
`p-ball) under the `p norm, centered at x, with scalar radius, ε,

Bp(x, ε) = {x | ||x− x||p ≤ ε}. (5)

The ε-ball is extended to the case of vector ε ∈ Rn
≥0 (i.e.,

ε-ball), defined as

Bp(x, ε) = {x | lim
ε′→ε+

||(x− x)� ε′||p ≤ 1}, (6)

where � denotes element-wise division.
Theorem 3.1 (From [10], Convex Relaxation of NN):

Given an m-layer neural network control policy π : Rny →

Rnu , there exist two explicit functions πLj : R
ny → Rnu and

πUj : R
ny → Rnu such that ∀j ∈ [nm],∀y ∈ Bp(y, ε), the

inequality πLj (y) ≤ πj(y) ≤ π
U
j (y) holds true, where

πUj (y) = 9 j,:y+ αj (7)

πLj (y) = 8j,:y+ β j, (8)

where 9,8 ∈ Rnu×ny and α,β ∈ Rnu are defined recur-
sively using NN weights, biases, and activations (e.g., ReLU,
sigmoid, tanh), as detailed in [10].

In a closed-loop system, Theorem 3.1 bounds the control
output for a particular measurement y. Moreover, if all that
is known is y ∈ Bp(y, ε), Theorem 3.1 provides affine
relationships between y and u (i.e., bounds valid within the
known set of possible y). These relationships enable efficient
calculation of NN output bounds, using Corollary 3.3 of [10].

We could leverage [10] to compute reachable sets by first
bounding the possible controls, then bounding the next state
set by applying the extreme controls from each state. This is
roughly the approach in [20], [32], for example. However, this
introduces excessive conservatism, because both extremes of
control would not be applied at every state (barring patho-
logical examples). To produce tight bounds on the reachable
sets, we leverage the relationship between measured output
and control in § IV.

IV. FORWARD REACHABILITY ANALYSIS
Recall that our goal is to find the set of all possible next states,
xt+1 ∈ Xt+1, given that the current state lies within a known
set, xt ∈ Xt . This will allow us to compute reachable sets
recursively starting from an initial set Xt = X0.

163940 VOLUME 9, 2021

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

FIGURE 3. Approach overview for simple 1D system. Theorem 3.1 relaxes the NN to give affine relationships between
observation yt and control: πU , πL. Theorem 4.1 uses the system dynamics to associate πU , πL with the next state set.
Theorem 4.2 optimizes the closed-loop dynamics over all states xt ∈ Xt to compute bounds on the next state, γU

t+1, γ
L
t+1.

The approach follows the architecture in Fig. 3. After
first relaxing the NN controller using Theorem 3.1, we then
associate linearized extreme controllers with extreme next
states in § IV-B. Then, using the linearized extreme controller,
we optimize over all states in the input set to find extreme next
states in § IV-C. We extend the formulation to handle control
limits in § VI-A, then describe how to convert the solutions
of the optimization problems into reachable set descriptions
in § IV-D.

A. ASSUMPTIONS & PROBLEM STATEMENT
This work assumes that Xt is described by either:

• an `p-ball for some norm p ∈ [1,∞], radius ε, and
centroid x, s.t. Xt = Bp(x, ε); or

• a polytope, for some Ain
∈ Rmin×nx , bin ∈ Rmin , s.t.

Xt = {xt | Ainxt ≤ bin},

and shows how to compute Xt+1 as described by either:

• an `∞-ball with radius ε and centroid x, s.t. Xt+1 =

B∞(x, ε); or
• a polytope for a specified Aout

∈ Rmout×nx , meaning
we will compute bout ∈ Rmout s.t. Xt+1 = {xt ∈
Rnx | Aoutxt ≤ bout}.

We assume that either Aout is provided (in the case of
polytope output bounds), or thatAout

= Inx (in the case of `∞
output bounds). Note that we use i to index polytope facets, j
to index the control vectors, and k to index the state vectors.
In this section, we assume that Ut = Rnu (no control input
constraints) for cleaner notation; this assumption is relaxed
in § VI-A.

The exact 1-step closed-loop reachability problem is as fol-
lows. For each row i inAout, solve the following optimization
problem, (

bouti
)∗
= max

xt∈Xt
Aout
i,: xt+1

s.t. xt+1 = f (xt ;π), (9)

where
(
bout

)∗ defines the tightest description of Xt+1 associ-
ated withAout. However, the nonlinearities in π make solving
this problem intractable in practice, so this section describes
a relaxation that provides bounds on (9).

B. BOUNDS ON xt+1 FROM A PARTICULAR xt
Lemma 4.1: Given an m-layer NN control policy π :

Rny → Rnu , closed-loop dynamics f : Rnx × 5 → Rnx

as in Eqs. (1) and (2), and specification matrix Aout
∈

Rmout×nx , for each i ∈ [mout], there exist two explicit
functions πLCL

:,i : Rny → Rnu and πUCL
:,i : Rny →

Rnu such that ∀j ∈ [nm],∀xt ∈ Bp(xt,0, ε) and ∀yt ∈
B∞(CT

t xt +
ν̄t+νt

2 ,
ν̄t−νt

2), the inequality Aout
i,: f (xt , π

LCL
:,i) ≤

Aout
i,: f (xt , π) ≤ Aout

i,: f (xt , π
UCL
:,i) holds true, where

π
UCL
:,i (yt) = ϒ i,:,:yt + 0:,i (10)

π
LCL
:,i (yt) = 4i,:,:yt +1:,i, (11)

letting ϒ,4 ∈ Rmout×nu×ny and 0,1 ∈ Rnu×mout ,

ϒ i,:,: = s(Aout
i,: Bt ,9,8) (12)

4i,:,: = s(Aout
i,: Bt ,8,9) (13)

0:,i = s(Aout
i,: Bt ,α,β) (14)

1:,i = s(Aout
i,: Bt ,β,α), (15)

using selector function (similar to torch.where) s : Rm
×

Rm×n
× Rm×n

→ Rm×n, where the matrix returned by s is
defined element-wise ∀a ∈ [m], b ∈ [n],

[s(z,A,B)]a,b =

{
Aa,b, if za ≥ 0
Ba,b, otherwise

(16)

and where 9,8,α,β are computed from Theorem 3.1 with
y0 = CT

t (xt,0 +
ν̄t+νt

2), and ε = ε + ν̄t−νt
2 .

Proof: For any particular measurement yt , after relaxing
the NN according to Theorem 3.1, let 5(yt) = {π |πLj (yt) ≤
πj(yt) ≤ πUj (yt)∀j ∈ [nu]} denote the set of possible effective

control policies. Denote the control policy πUCL
:,i ∈ 5(yt) as

one that induces the least upper bound on the i-th facet of the
next state polytope,

Aout
i,: f (xt ;π

UCL
:,i)

= max
π∈5(yt)

Aout
i,: f (xt ;π)

= max
π∈5(yt)

Aout
i,: [Atxt + Btπ (yt)+ ct + ωt]

=

[
max

π∈5(yt)
Aout
i,: Btπ (yt)

]
+ Aout

i,: [Atxt + ct + ωt] , (17)

VOLUME 9, 2021 163941

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

Thus for yt ,

π
UCL
:,i = argmax

π∈5(yt)
Aout
i,: Btπ(yt). (18)

The resulting control input ∀i ∈ [mt+1], j ∈ [nu] is,

π
UCL
j,i (yt) =

{
πUj (yt), if Aout

i,: Bt,:,j ≥ 0

πLj (yt), otherwise
. (19)

Writing (19) in matrix form results in (10). The proof of the
lower bound follows similarly. �

C. BOUNDS ON xt+1 FROM ANY xt ∈ Xt
Now that we can bound each facet of the next state polytope
given a particular current state and observation, we can form
bounds on the next state polytope facet given a set of possible
current states. This is necessary to handle initial state set
constraints and to compute ‘‘t > 1’’-step reachable sets
recursively as in (3). We assume xt ∈ Xt .
Lemma 4.2: Given an m-layer NN control policy π :

Rny → Rnu , closed-loop dynamics f : Rnx × 5 → Rnx as
in Eqs. (1) and (2), and specification matrixAout

∈ Rmout×nx ,
for each i ∈ [mout], there exist two fixed values γUt+1,i
and γ Lt+1,i such that ∀xt ∈ Xt , the inequality γ Lt+1,i ≤
Aout
i,: f (xt ;π) ≤ γ

U
t+1,i holds true, where

γUt+1,i = max
xt∈Xt

MU
i,:xt + nUi (20)

γ Lt+1,i = min
xt∈Xt

ML
i,:xt + nLi , (21)

withMU
∈ Rnx×nx , nU ∈ Rnx defined as

MU
i,: =

(
Aout
i,:

(
At + Btϒ i,:,:CT

t

))
(22)

ML
i,: =

(
Aout
i,:

(
At + Bt4i,:,:CT

t

))
(23)

nUi = Aout
i,:

(
Bt
(
ϒ i,:,:s(Aout

i,: Btϒ i,:,:CT
t , ν̄t , νt)+ 0:,i

)
+ ct + s(Aout

i,: Bt , ω̄t ,ωt)
)

(24)

nLi = Aout
i,:

(
Bt
(
4i,:,:s(Aout

i,: Bt4i,:,:CT
t , νt , ν̄t)+1:,i

)
+ ct + s(Aout

i,: Bt ,ωt , ω̄t)
)
, (25)

with ϒ,4,0,1 computed from Theorem 4.1.
Proof: Bound the next state polytope’s i-th facet above,

Aout
i,: xt+1
= Aout

i,: f (xt ;π) (26)

≤ Aout
i,: f (xt ;π

UCL
:,i) (27)

≤ max
xt∈Xt

Aout
i,: f (xt ;π

UCL
:,i) := γUt+1,i (28)

= max
xt∈Xt

Aout
i,:

[
Atxt + Btπ

UCL
:,i (yt)+ ct + ωt

]
(29)

= max
xt∈Xt

Aout
i,:
[
Atxt + Bt

(
ϒ i,:,:yt + 0:,i

)
+ ct + ωt] (30)

= max
xt∈Xt

Aout
i,:

[
Atxt + Bt

(
ϒ i,:,:

(
CT
t xt + νt

)
+ 0:,i

)
+ct + ωt] (31)

= max
xt∈Xt

(
Aout
i,:

(
At + Btϒ i,:,:CT

t

))
xt

+Aout
i,:
(
Bt
(
ϒ i,:,:νt + 0:,i

)
+ ct + ωt

)
(32)

= max
xt∈Xt

(
Aout
i,:

(
At + Btϒ i,:,:CT

t

))
xt +

Aout
i,:

(
Bt
(
ϒ i,:,:s(Aout

i,: Btϒ i,:,:CT
t , ν̄t , νt)+ 0:,i

)
+ ct + s(Aout

i,: Bt , ω̄t ,ωt)
)
, (33)

where (30) substitutes the definition of π
UCL
:,i from

Theorem 4.1, (31) substitutes the observation from (2), (32)
separates terms that depend on xt , and (33) introduces the
worst-case realizations of process and measurement noise.
Substituting MU

i,:,n
U
i results in (20). The proof of the lower

bound follows similarly. �
The optimization problems in Eqs. (20) and (21) have

convex cost with convex constraints xt ∈ Xt (e.g., polytope
Xt). We solve the linear programs (LPs) with cvxpy [33],

γUt+1,i = LP(MU
i,:xt ,A

in,bin)+ nUi (34)

γ Lt+1,i = LP(−ML
i,:xt ,A

in,bin)+ nLi . (35)

D. CONVERTING STATE CONSTRAINTS
INTO REACHABLE SETS
1) REACHABLE SETS AS `∞-BALLS
Assume X0 is an `p-ball. Define {p, ε,x} s.t. X0 ⊆ Bp(x, ε)
and let R̄0(X0) = X0. Using the results of the previous
section, use xt=0 ∈ Bp(x, ε) to compute (γU1,k , γ

L
1,k) for each

index of the state vector k ∈ [nx], specifying Aout
= Inx .

Recursively compute

R̄t+1(X0) = B∞

(
γUt+1 + γ

L
t+1

2
,
γUt+1 − γ

L
t+1

2

)
. (36)

2) REACHABLE SETS AS POLYTOPES
Assume X0 is an `p-ball or polytope. Either define {p, ε,x}
s.t. X0 ⊆ Bp(x, ε) or define {Ain,bin} s.t. Xt = {xt |Ainxt ≤
bin} and let R̄0(X0) = X0. Using the results of the previ-
ous section, use xt=0 ∈ Bp(x, ε) or {Ain,bin} to compute
(γU1,i, γ

L
1,i) for each index of output polytope facets i ∈

[mout], giving

R̄t+1(X0) =

{
xt |

[
Aout

−Aout

]
xt ≤

[
γUt+1
−γ Lt+1

]}
. (37)

In both cases, R̄t (X0) ⊇ Rt (X0)∀t ≥ 0, so these R̄t can be
used to verify the original closed loop system (2).

E. CLOSED-FORM SOLUTION
Rather than employing an LP solver as in (34), the optimiza-
tion problem in (20) can be solved in closed-form when Xt is
described by an `p-ball.
Lemma 4.3: In the special case of Theorem 4.2 where

Xt = Bp(xt , ε) for some p ∈ [1,∞), the following
closed-form expressions are equivalent to Eqs. (20) and (21),
respectively,

γUt+1,k = ||ε �MU
i,:||q +MU

i,:xt + nUi (38)

163942 VOLUME 9, 2021

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

γ Lt+1,k = −||ε �ML
i,:||q +ML

i,:xt + nLi , (39)

where 1/p+ 1/q = 1 (e.g., p = ∞, q = 1).
Proof: The proof proceeds as in [34] and [8].

γUt+1,k = max
xt∈Bp(xt ,ε)

MU
i,:xt + nUi (40)

=

(
max

ζ∈Bp(0,1)
MU

i,:(ζ � ε)

)
+MU

i,:xt + nUi (41)

=

(
max

ζ∈Bp(0,1)
(ε �MU

i,:)ζ

)
+MU

i,:xt + nUi (42)

= ||ε �MU
i,:||q +MU

i,:xt + nUi , (43)

with � denoting element-wise multiplication (Hadamard
product). Recall that nUi does not depend on xt . From (40)
to (41), we substitute xt := ζ � ε + xt , to shift and re-scale
the observation to within the unit ball around zero, ζ ∈
Bp(0,1). The commutative property of the Hadamard prod-
uct allows (41) to (42). Themaximization in (42) is equivalent
to a `q-norm in (43) by the definition of the dual norm ||a||q =
{sup aT b : ||b||p ≤ 1} and the fact that the `q norm is the dual
of the `p norm for p, q ∈ [1,∞) (with 1/p+ 1/q = 1). The
proof of the lower bound follows similarly. �

Algorithm 1 Closed-Loop CROWN Propagator
Input: initial state set X0, trained NN control policy π ,

dynamics f , time horizon τ
Output: forward reachable set approximations R̄1:τ (X0)
1: R̄0(X0)← X0
2: for t ∈ {1, 2, . . . , τ } do
3: Yt−1← possibleObs(R̄t−1(X0), f)
4: 9,8,α,β ← CROWN(π,Yt−1)
5: for i ∈ [mout] or k ∈ [nx] do
6: γUt+1,i← (34) or (38)
7: γ Lt+1,i← (35) or (39)
8: end for

// Polytope Reachable Sets

9: R̄t (X0)←

{
x |
[
Aout

−Aout

]
x ≤

[
γUt+1
−γ Lt+1

]}
from (37)

// `∞-ball Reachable Sets

10: R̄t (X0)← B∞
(
γUt+1+γ

L
t+1

2 ,
γUt+1−γ

L
t+1

2

)
from (36)

11: end for
12: return R̄1:τ (X0)

F. ALGORITHM FOR COMPUTING
FORWARD REACHABLE SETS
The proposed procedure for estimating forward reachable sets
fromX0 for a neural feedback loop is provided in Algorithm 1
(the term ‘‘propagator’’ will be explained in § V). After
initializing the zeroth forward reachable set as the initial set
(Line 1), we recursively compute R̄t (X0) forward in time
(Line 2). For each timestep, we determine which observations
the NN could receive, then pass those through CROWN [10]

FIGURE 4. System architecture. A closed-loop propagator uses the trained
NN control policy and dynamics to estimate reachable sets, and a
closed-loop partitioner decides how to split the initial state set into
pieces. This is the closed-loop extension of the architecture from our
prior work [36].

(or another NN relaxation method, provided it returns the
corresponding terms). Depending on whether polytope facets
or `p-balls are used, the upper/lower bounds are computed
facet-by-facet or state-by-state. Then, the γ terms are con-
verted into set representations as in § IV-D. After following
this procedure for each timestep, the algorithm returns a
sequence of outer-approximations of the forward reachable
sets (Line 12).

V. TIGHTER REACHABLE SETS BY PARTITIONING THE
INITIAL STATE SET
NN relaxation methods can be improved by partitioning the
input set [35], particularly when the input set is large but of
low dimension. Here, we achieve tighter bounds by splitting
X0 into subsets, computing N -step reachable sets for each
of the subsets separately, then returning the union of all
reachable sets from each subset.

Recall that [36] introduced an architecture composed of a
partitioner and propagator for analyzing NNs in isolation.
The partitioner is an algorithm to split the NN input set in
an intelligent way (e.g., uniform gridding [35], simulation
guidance [20], greedy simulation guidance [36]), and the
propagator is an algorithm to estimate bounds on the NN
outputs given a NN input set (e.g., IBP [7], Fast-Lin [8],
CROWN [10], SDP [13]). The partitioner can query the prop-
agator repeatedly to refine the estimated output set bounds.
The choice and design of partitioners and propagators has
important implications on the bound tightness and computa-
tional runtime.

This work extends the framework from [36] to closed-loop
systems, as visualized in Fig. 4. In particular, CL-CROWN
and Reach-SDP represent closed-loop propagators (given an
initial state set, they compute reachable sets for a trained
NN control policy and closed-loop dynamics), and in this
section we extend partitioners discussed in [36] to be closed-
loop partitioners. Altogether, we call the nested architecture
a closed-loop analyzer.

A. CLOSED-LOOP PARTITIONERS
The simplest closed-loop partitioner splits the input set into a
uniform grid, as described in Algorithm 2. After splitting X0
into5nx

k=0rk cells (Line 2), each cell ofX0 is passed through a
closed-loop propagator, CLProp (e.g., CL-CROWN (Line 1)

VOLUME 9, 2021 163943

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

Algorithm 2 Closed-Loop Uniform Partitioner
Input: initial state set X0, trained NN control policy π ,

dynamics f , time horizon τ , number of partition cells r
Output: forward reachable set approximations R̄1:τ (X0)
1: R̄t ← ∅ ∀t ∈ {1, . . . , τ }
2: S ← partition(X0, r)
3: for X ′ ∈ S do
4: R̄′1:τ ← CLProp(X ′, f , π, τ)
5: R̄t ← R̄t ∪ R̄′t ∀t ∈ {1, . . . , τ }
6: end for
7: return R̄1:τ (X0)

or Reach-SDP [21]). For each timestep, the returned estimate
of the reachable set for all of X0 is thus the union of all
reachable sets for cells of the X0 partition.

There are several reasons to use an iterative partitioner
rather than the uniform partitioner presented before, as dis-
cussed in [20], [36]. Thus, the closed-loop variant of the
greedy simulation-guided partitioner from [36] is described
in Algorithm 3. After acquiring N Monte Carlo samples from
X0 (Line 1), those sampled points are simulated forward in
time according to the dynamics and control policy (Line 2).
The extrema of these samples can be used to define the sam-
pled reachable sets at each timestep (Line 3). Then, the full
initial state setX0 is passed through a closed-loop propagator
(Line 4) and the input and reachable set estimates are added
to a stack,M .

An iterative process is used to refine the reachable set
estimates from the full X0. The element with largest distance
from the sampled reachable set estimate is popped from M
(e.g., use the same idea from Fig. 3a of [36] on the final
timestep’s reachable set). If the chosen element’s reachable
set is within the sampled reachable set for all timesteps, there
is no need to further refine that cell and its reachable set can
be added to set that will eventually be returned. Otherwise,
the input set of that element is bisected (Line 11) and each
of the two input sets are passed through CLProp and added to
M . Termination conditions, such as an emptyM or number of
CLProp calls or a timeout can be implemented depending on
the application. Finally, the remaining elements of the stack
are added to the set that will be returned.

VI. HANDLING NONLINEARITIES
A. ACCOUNTING FOR CONTROL LIMITS, Ut
The key terms in Theorem 4.1 can be modified to account for
control input constraints, as

π
UCL
:,i (yt) = ProjUt

(
ϒ i,:,:yt + 0:,i

)
(44)

π
LCL
:,i (yt) = ProjUt

(
4i,:,:yt +1:,i

)
, (45)

A common example is box control input constraints. The
element-wise control input is,

π
UCL
j,i (yt) =

{
clip(πUj (yt),uj, ūj), if Aout

i,: Bt,:,j ≥ 0

clip(πLj (yt),uj, ūj), otherwise,
(46)

Algorithm 3 Closed-Loop Greedy Sim-Guided Partitioner
Input: initial state setX0, number of MC samples N , trained

NN control policy π , dynamics f , time horizon τ
Output: forward reachable set approximations R̄1:τ (X0)

1: XMC
0

N i.i.d.
∼ Unif(X0)

2: XMC
t+1 ← f (XMC

t ;π) ∀t ∈ {1, . . . , τ }
3: RMC

t ← extrema of XMC
t ∀t ∈ {1, . . . , τ }

4: R̄1:τ ← CLProp(X0, f , π, τ)
5: M ← {(X0, R̄1:τ)}
6: while M 6= ∅ or termination condition do

7: (X ′,R′1:τ)
M.pop
← argmax(X ′′,R′′1:τ)∈M d(RMC

1:τ ,R
′′

1:τ)
8: ifR′t ⊆ RMC

t ∀t ∈ {1, . . . , τ } then
9: R̄t ← R̄t ∪R′t ∀t ∈ {1, . . . , τ }

10: else
11: X 1,X 2

← Bisect(X ′)
12: R̄1

1:τ ← CLProp(X 1, f , π, τ)
13: R̄2

1:τ ← CLProp(X 2, f , π, τ)
14: M ← M ∪ {(X 1, R̄1

1:τ), (X
2, R̄2

1:τ)}
15: end if
16: end while
17: R̄t ← R̄t ∪ (∪(X ′′,R′′)∈MR′′t) ∀t ∈ {1, . . . , τ }
18: return R̄1:τ (X0)

FIGURE 5. Control limits. The NN control policy (red) is bounded by
πU , πL from CROWN (blue), but none of these respect the control limits
(green). While adding a clip could be non-convex (right block), § VI-A
borrows the idea from [21] to append a few layers to the NN to handle
control limits.

where clip saturates the control if it exceeds the limits. How-
ever, clip could be non-convex depending on the domain
of xt (and violates DCP rules in cvxpy [33] regardless),
as visualized in Fig. 5.

We instead utilize the insights from [21] that clip looks like
two ReLUs stitched together (one is inverted). In particular,
we make the following changes to the NN:

1) Subtract ut from final layer’s bias, b(m)← b(m) − ut
2) Append ReLU activation
3) Append linear layer,W(m+1) � −Inu ,b(m+1) � ūt−ut
4) Append ReLU activation
5) Append linear layer,W(m+2)

←−Inu ,b
(m+2)

← ūt .

163944 VOLUME 9, 2021

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

All of the preceding results apply to this modified NN for a
system with box control input constraints. Note that adding
these ReLUs does not limit which types of activations can be
used in other layers of the NN.

While these additional layers exactly mimic clip for
any particular yt , they can induce additional conservatism
because the additional ReLUs must be relaxed as well. Addi-
tionally, while CROWNprovides several options for the slope
of the lower bound for a ReLU relaxation, note that the two
additional ReLUs should be relaxed with a zero-slope lower
bound to ensure no values exceed the control limits.

B. EXTENSION TO POLYNOMIAL DYNAMICS
This section extends the above work to systems with polyno-
mial dynamics. Consider the system with dynamics

xt+1 = Atxt + f̄ (xt)+ Btut + ct + ωt
yt = CT

t xt + νt , (47)

where f̄ (x) : Rn
→ Rn is a polynomial and the other

terms are defined in the same way as in (1). As a result, the
counterpart of (20) and (21) in Lemma 4.2 are respectively as
follows

γUt+1,j = max
xt∈Xt

MU
i,:xt + fj(xt)+ nUi (48)

γ Lt+1,j = min
xt∈Xt

ML
i,:xt + fj(xt)+ nLi , (49)

where fj(xt) = Aout
i,: f̄ (xt). Because of the polynomial term

fj(xt) in (48) and (49), these objectives can be nonconvex and
NP-Hard to solve for global optimality [37]. Thus, we adopt
a principled convex relaxation technique [38] to compute
a guaranteed upper and lower bound for (48) and (49),
respectively.

We first transform the polynomial term f (xt) to a linear or
quadratic term by introducing new variables s ∈ Rns and new
quadratic constraints. For example, f (xt) = xt;1xt;2xt;3xt;4
is equivalent to f (s) = s1s2, with s1 = xt;1xt;2 and s2 =
xt;3xt;4. Then (48) can be transformed as a quadratically
constrained quadratic programming (QCQP) in the following

γU = max
x∈X ,s̄∈Q

MUx+ s̄TQ0s̄+ bT0 s̄+ nU (50)

where the subscripts are dropped here for clarity, s̄ =
[xT , sT]T ∈ Rn+ns , Q0 ∈ Sn+ns ,b0 ∈ Rn+ns and
Q = {s̄ | s̄TQis̄ + bTi s̄ + ci = 0,Qi ∈ Sn+ns ,bi ∈
Rn+ns , ci ∈ R,∀i = 1, . . .} is formulated by a sequence of
quadratic constraints. For QCQP, the semidefinite relaxation
can give the tightest bounds among existing convex relaxation
techniques [38]. The semidefinite relaxation of (50) can be
formulated as

γU = max
x∈X ,S∈Q̄,S�0

MUx+ Tr(Q̄0S)+ nU (51)

where S = [1, s̄T]T [1, s̄T] ∈ S1+n+ns , Q̄i =

[0,bTi /2;bi/2,Qi], i = 0, . . . and Q̄ = {S | Tr(Q̄iS) + ci =
0, i = 1, . . .}. (51) is equivalent to the original QCQP (50)
if an extra nonconvex constraint rank(S) = 1 is added.

As a result, solving the convex program (51) will yield a
guaranteed upper bound for (48). The lower bound for (49)
follows similarly.

VII. BACKWARD REACHABILITY ANALYSIS
So far, this paper has considered the forward reachability
problem: starting from a set X0, what are all the possible
states the system could occupy at time t? In this section,
we discuss the opposite problem of backward reachability:
given a target set XT , from which states will the system end
up in the target set? Depending on whether the initial or
target state sets are known a priori and/or change frequently,
one of these two paradigms would be a better fit for a given
application. Furthermore, the target set could represent a goal
set or avoid/collision set – either way, this section provides a
framework for guaranteeing the system will reach/avoid the
target set.

Traditionally, it is straightforward to switch between for-
ward and backward reachability analysis through a change of
variables [15], [22]. However, including a NN in the analysis
adds new challenges. In particular, a key challenge with
propagating sets backward through NNs is that common NN
activations have finite range (e.g., ReLU(x) = 0 could corre-
spond to any x ≤ 0), which causes the sets to quickly explode
to∞. Moreover, even using an infinite range activation (e.g.,
Leaky ReLU), the weight matrices may not be invertible (e.g.,
singular, insufficient rank). Our approach is able to avoid
these issues and still leverage forward propagation tools (e.g.,
CROWN [10]) despite thinking backward in time.

Recent related work has developed specific invertible-by-
design NN architectures [39] and modifications to the train-
ing procedure to regularize for invertibility [40]. In contrast,
our approach can be applied to any NN for which an affine
relaxation can be computed, i.e., the same broad class of NN
architectures (e.g., feedforward NNs with general activation
functions) with arbitrary training processes that CROWN (or
recent extensions [41]–[43]) operates on.

A. BACKREACHABLE & BACKPROJECTION SETS
Fig. 6 illustrates the important concepts for this analysis.
Three different sets (left) contain states that lead to the target
set XT under different control inputs, as defined below. The
nomenclature of these sets is motivated by [44], but with
slightly different definitions.

The first of these sets is the backward reachable set,

RB
t−1(XT) = {x | ∃u ∈ Ut−1 s.t.

At−1x+ Bt−1u+ ct−1 ∈ RB
t (XT)} ∀t ≤ 0

RB
0 (XT) = XT , (52)

which consists of states xt for which some admissible control
trajectory, ut:T , takes the system to XT . To simplify the
notation, we assume no noise (i.e., ωt = ω̄t = νt = ν̄t = 0)
and perfect observations, CT

t = I⇒ yt = xt in this section.
Backward reachable sets are particularly useful when the
controller is truly a ‘‘black box’’ or has not yet been defined

VOLUME 9, 2021 163945

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

FIGURE 6. Backreachable, backprojection, and target sets. Given a target
set, XT , the backreachable set RB

−1(XT) contains all states for which
some control exists to move the system to XT in one timestep. The
backprojection set, P−1(XT) contains all states for which the NN
controller leads the system to XT . Inner-approximation P̄−1(XT)
contains all states for which all controls that the relaxed NN could apply
lead the system to XT .

(since the definition only uses the fact that u ∈ U , rather
than π).
In the case of a trained NN control policy, we can be

more precise about the closed loop system’s safety properties.
In particular, for the closed-loop system f from (2), we denote
P−t (XT) the backprojection set, which contains all states that
will lead to a given target setXT ⊆ R

nx in exactly t timesteps,
as defined by the recursion

Pt−1(XT) = {x | At−1x+ Bt−1π (x)+ ct−1 ∈ Pt (XT)}

∀t ≤ 0

P0(XT) = XT . (53)

Recall that in § III-C, we computed over-approximations of
the reachable sets because the NN makes exact reachability
analysis computationally challenging. Analogously, we will
compute under-approximations of the backprojection sets,
P̄−t (XT) ⊆ P−t (XT). Under-approximations are still useful
because if P̄−t (XT) ⊇ X0, then P−t (XT) ⊇ X0 as well,
meaning for every state in X0, the control policy π is guar-
anteed to lead the system to XT in T timesteps. Thus, it is
desirable for P̄−t (XT) to be as close to P−t (XT) as possible.

B. DERIVING BACKPROJECTION SETS
We first provide a summary of the proposed approach:

1) Ignoring the NN, find (hyper-)rectangular bounds on
the backreachable set (this is a superset of the backpro-
jection set associated with the particular NN controller)

2) Within this region, relax the NN controller to acquire
upper/lower affine bounds on control

3) Compute the states that will lead to the target set for
every control effort within the upper/lower bounds

This last step provides an under-approximation of the back-
projection set, which is the set of interest.

The following lemma provides polytope bounds on P̄t (XT)
for a single timestep, which is the key component of the
recursive algorithm introduced in the next section.

Lemma 7.1: Given an m-layer NN control policy π :
Rny → Rnu , closed-loop dynamics f : Rnx × 5 → Rnx

as in Eqs. (1) and (2), and bounds on the state set, xt+1 ≤
xt+1 ≤ x̄t+1, the following polytope bounds on the previous
state set hold:

At + ZB98

−
(
At + ZB89)

Inx
−Inx

 xt ≤

x̄t+1 −

(
zBαβ + ct

)
−xt+1 + zBβα + ct

x̄t
−xt

 , (54)

where ZB89 ,ZB98
∈ Rnx×ny and zBβα, zBαβ ∈ Rnx are

defined ∀k ∈ [nx] (by row/element),[
ZB89

]
k,:
= Bt;k,:s(Bt;k,:,8,9) (55)[

ZB98
]
k,:
= Bt;k,:s(Bt;k,:,9,8) (56)[

zBβα
]
k
= Bt;k,:s(Bt;k,:,β,α) (57)[

zBαβ
]
k
= Bt;k,:s(Bt;k,:,α,β), (58)

and xt , x̄t are computed elementwise by solving the LPs
in Eqs. (59) to (64).

Proof: Given dynamics from Eqs. (1) and (2), solve the
following optimization problems for each state k ∈ [nx],

x̄t;k = max
xt ,ut

xt;k (59)

s.t. Atxt + Btut + ct ∈ Xt+1 (60)

ut ∈ Ut (61)

xt;k = min
xt ,ut

xt;k (62)

s.t. Atxt + Btut + ct ∈ Xt+1 (63)

ut ∈ Ut , (64)

which provides a (hyper-)rectangular outer bound (xt ≤ xt ≤
x̄t) on the backreachable set. Note that this is a LP for convex
Xt+1,Ut as we will use here.

Given that bound, xt ≤ xt ≤ x̄t , Theorem 3.1 provides
9,8,α,β which lead to the following inequalities based
on Theorem 4.1 with Aout

= Inx , ∀k ∈ [nx],[
Atxt + Bt (s(Bt;k,:,8,9)yt + s(Bt;k,:,β,α))+ ct

]
k

≤ xt+1;k
≤
[
Atxt + Bt (s(Bt;k,:,9,8)yt + s(Bt;k,:,α,β))+ ct

]
k .

(65)

After substituting in for yt , grouping xt terms together, and
using Eqs. (55) to (58),(

At + ZB89
)
xt + zBβα + ct

≤ xt+1

≤

(
At + ZB98

)
xt + zBαβ + ct . (66)

To ensure no NN control pushes the system into a state
beyond [xt+1, x̄t+1], the following inequalities hold,

xt+1 ≤
(
At + ZB89

)
xt + zBβα + ct (67)

163946 VOLUME 9, 2021

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

Algorithm 4 Backprojection Set Estimation
Input: target state set XT , trained NN control policy π , time

horizon τ , partition parameter r
Output: backprojection set approximations P̄−τ :0(XT)
1: P̄0(XT)← XT
2: for t in {−1,−2, . . . ,−τ } do
3: P̄t (XT)← ∅
4: R̄B

t (XT) = [x
t
, ¯̄xt]← backreach(P̄t+1(XT),Ut)

5: S ← partition([x
t
, ¯̄xt], r)

6: for [xt , x̄t] in S do
7: 9,8,α,β ← CROWN(π, [xt , x̄t])

8: P←

At + ZB98

−
(
At + ZB89)

Inx
−Inx

9: p←

x̄t+1 −

(
zBαβ + ct

)
−xt+1 + zBβα + ct

x̄t
−xt

10: A← {x | Px ≤ p}
11: P̄t (XT)← P̄t (XT) ∪A
12: end for
13: end for
14: return P̄−τ :0(XT)

(
At + ZB98

)
xt + zBαβ + ct ≤ x̄t+1. (68)

Written in matrix form,[
At + ZB98

−
(
At + ZB89)] xt ≤ [x̄t+1 − (zBαβ + ct

)
−xt+1 + zBβα + ct

]
. (69)

To arrive at (54), append xt ≤ xt ≤ x̄t to (69). �
Corollary 7.2: The set P̄−1(XT) composed of all xt that

satisfy (54) is a subset of the one-step backprojection set,
P−1(XT).

Proof: Suppose xt satisfies (54), i.e., xt ∈ P̄−1(XT).
Thus, xt also satisfies the inequalities (67) and (68), and thus
also (66). Since xt+1 = f (xt ;π), xt also satisfies xt+1 ≤
f (xt ;π) ≤ x̄t+1, which means that xt ∈ P−1(XT) as well.
Thus, P̄−1(XT) ⊆ P−1(XT). �

C. ALGORITHM FOR COMPUTING BACKPROJECTION SETS
Theorem 7.1 provides a formula for computing P̄−1(XT),

i.e., an under-approximation of the backprojection set for a
single timestep. This section extends that idea to enable com-
puting P̄−τ :0(XT) for a time horizon τ and also describes how
partitioning can help improve the results, particularly when
(54) is the empty set. The proposed procedure is summarized
in Algorithm 4.

After initializing the zeroth backprojection set as the
target set (Line 1), we recursively compute P̄t (XT) back-
ward in time (Line 2). For each timestep, we first compute
an over-approximation on the backreachable set, R̄B

t (XT),

by solving the LPs in Eqs. (59) to (60) and Eqs. 62 and (63)
(Line 4).

Since RB
t (XT) ⊇ Pt (XT), we can relax the NN over

RB
t (XT), and that relaxation will also hold for all states

in Pt (XT) and P̄t (XT). However, RB
t (XT) could be large,

which could lead to a loose NN relaxation. Thus, instead of
analyzingRB

t (XT) as a single set, we uniformly partition the
setRB

t (XT) into r ∈ Nnx cells (defined per dimension).
For each cell in the partition, we have a (hyper-)rectangular

set of states, [xt , x̄t]i, that could be passed as inputs to the NN
controller. TheNN can be relaxed over this set using CROWN
(Theorem 3.1) or a similar type of algorithm. In particular,
we extract 9,8,α,β from CROWN, which define P and p,
the constraints in (54) (Line 8 and 9). These constraints define
a polytope of states that are guaranteed to lead to P̄t+1(XT) at
the next timestep (for any control within CROWN’s bounds),
so those states should be added to P̄t (XT) (Line 11). Note that
it is possible, despite partitioning, that A = ∅. After follow-
ing this procedure for each timestep, the algorithm returns
a sequence of inner-approximations of the backprojection
sets (Line 14).

VIII. EXPERIMENTAL RESULTS
This section demonstrates our convex reachability analysis
tool, Reach-LP, on simulated scenarios. We first show an
example verification task and quantify the improvement in
runtime vs. bound tightness over the state-of-the-art [21] for
a double integrator system. We then apply the algorithm on a
6D quadrotor model subject to multiple sources of noise.

A. DOUBLE INTEGRATOR
Consider the LTI double integrator system from [21],

xt+1 =
[
1 1
0 1

]
︸ ︷︷ ︸

At

xt +
[
0.5
1

]
︸ ︷︷ ︸

Bt

ut , (70)

with ct = 0, Ct = I2 and no noise, discretized with sampling
time ts = 1s. As in [21], we implemented a linear MPC
with prediction horizon NMPC = 10, weighting matrices
Q = I2,R = 1, and terminal weighting matrix P∞ syn-
thesized from the discrete-time Riccati equation, subject to
state constraintsAC

= [−5, 5]×[−1, 1] and input constraint
ut ∈ [−1, 1]∀t . We used MPC to generate 2420 samples of
state and input pairs then trained a NN with Keras [45] for 20
epochs with batch size 32.

B. COMPARISON WITH BASELINE
Table 1 and Fig. 7 compare several algorithms on
the double integrator system using a NN with [5,5]
neurons and ReLU activations.1 The key takeaway is that
Reach-LP-Partition provides a 5× improvement in reachable
set tightness over the prior state-of-the-art, Reach-SDP [21]
(which does not use input set partitioning), while requiring

1The proposed methods apply similarly to NNs with other activation
functions, including sigmoid and tanh

VOLUME 9, 2021 163947

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

TABLE 1. Reachable Sets for Double Integrator. The first two methods
analyze the NN and dynamics separately, leading to high error
accumulation, while the next 4 methods analyze the NN and dynamics
together. Reach-LP is 4,000× faster to compute but 7× looser than
Reach-SDP [21]. Reach-LP-Partition refines the Reach-LP bounds by
splitting the input set into 16 subsets, giving 150× faster computation
time and 5× tighter bounds than Reach-SDP [21].

FIGURE 7. Reachable sets for double integrator. In (a), all reachable set
algorithms bound sampled states across the timesteps, starting from the
blue X0, and the tightness of these bounds is quantified per timestep
in (b).

150× less computation time. We implemented Reach-SDP
in Python with cvxpy and MOSEK [46]. All computation
times (until § VIII-I) are reported from an i7-6700K CPU
with 16GB RAM on Ubuntu 20.04.

We also note the large error accumulation that occurs when
the NN and dynamics are analyzed separately, as in [20], [32],
as that assumes the NN could output its extreme values from
any state in Xt (top 2 rows of Table 1). CL-CROWN is a sim-
ple baseline where, at each timestep, the NN output bounds
UNN
t are computed with CROWN [10], then (9) is solved (in

closed-form) assuming ut ∈ UNN
t . Similarly, CL-SG-IBP is

the method from [20], where UNN
t is instead computed with

SimGuided-IBP to resolution ε = 0.1.
Fig. 7a shows sampled trajectories, where each colored

cluster of points represents sampled reachable states at a
particular timestep (blue→orange→green, etc.). Recall that
sampling trajectories could miss possible reachable states,
whereas these algorithms are guaranteed to over-approximate
the reachable sets. Reachable set bounds are visualized for
various algorithms: Reach-SDP [21], Reach-LP, and those
two algorithms after partitioning the input set into 16 cells.
The key takeaway is that while all approaches provide outer
bounds on the sampled trajectories, the algorithms provide
various degrees of tightness to the sampled points.

We quantify tightness as the ratio of areas between the
smallest axis-aligned bounding box on the sampled points
and the provided reachable set (minus 1), shown in Fig. 7b as
the system progresses forward in time. Note that as expected,
all algorithms get worse as the number of timesteps increase,

TABLE 2. Runtime in seconds shows over an order of magnitude
speed-up by using closed-form (C.F.) instead of linear program (L.P.) to
solve (20) when applicable (i.e., `p-ball sets).

but that Reach-LP-Partition and Reach-SDP-Partition per-
form the best and similarly. This provides numerical compar-
isons of the rectangle sizes from Fig. 7a.

Note that both Reach-LP and Reach-SDP methods could
be improved by properly choosing the direction of polytope
facets. Additionally, while Reach-SDP can provide ellip-
soidal bounds given the quadratic nature of the formulation,
we implement only the polytope bounds in this comparison.

C. VERIFICATION
A primary application of reachable sets is to verify reach-
avoid properties. In Fig. 7a, we consider a case with an avoid
set A = {x | x1 ≥ 0.35} (orange) and a goal set G =
[−0.5, 0.5] × [−0.25, 0.25] (cyan). Reach-LP and Reach-
SDP-Partition, verify these properties for this 5-step scenario,
highlighting the importance of tight reachable sets.

D. SCALABILITY TO DEEP NNS
To demonstrate the scalability of the method, we trained
NNs with 1-10 hidden layers of 5 neurons and report the
average runtime of 5 trials of reachability analysis of the
double integrator system. In Fig. 8a, while Reach-SDP
appears to grow exponentially (taking > 800s for a 10-layer
NN), our proposed Reach-LP methods remain very efficient
(< 0.75s for Reach-LP on all NNs). Note that we omit
Reach-SDP-Partition (∼ 16× more than Reach-SDP) from
this plot to maintain reasonable scale. Recall that CROWN
itself has O(m2n3) time complexity [10], for an m-layer net-
work with n neurons per layer and n outputs.

E. ABLATION STUDY: `∞ VS. POLYTOPES
Recall that § IV described reachable sets as either polytopes
or `∞-balls. Fig. 8b shows the effect of that choice: as the
number of sides of the polytope increases, the reachable set
size decreases. The tradeoff is that the computation time
scales linearly with the number of sides on the polytope. Note
that a `∞-ball is a 4-polytope, and thatX0 was chosen to show
a different scenario than Fig. 7.

F. ABLATION STUDY: CLOSED-FORM VS. LP
The computational benefit of the closed-form solution in
Theorem 4.3 is shown in Table 2. For both the double

163948 VOLUME 9, 2021

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

FIGURE 8. (a) Our linear relaxation-based methods (Reach-LP,
Reach-LP-Partition) scale well for deeper NNs (Reach-LP: 0.6 to 0.74s),
whereas SDP-based methods grow to intractable runtimes. Note that
input set partitioning multiplies computation time by a scalar.(b) Using
Reach-LP, the bounding shapes correspond to l∞-ball, 8-Polytope, and
35-Polytope. Reachable sets become tighter with more facets.

integrator (a) and 6D quadrotor (b), the runtime of the closed-
form (C.F.) solution is over an order of magnitude faster than
with the LP solver. This speedup is observed across various
partition resolutions, with times reported as the mean ± one
standard deviation of 5 repeats. Note that the C.F. and LP
solvers return the same reachable sets, so there is no tightness
tradeoff – solely a computational speedup.

G. GREEDY SIM-GUIDED PARTITIONING
Fig. 9 shows the refinement of reachable sets under
the Closed-Loop Greedy Sim-Guided partitioner and
CL-CROWN propagator. The blue reachable set estimates
become much tighter to the Monte Carlo samples, while
still providing a guaranteed over-approximation of the true
system’s forward reachable sets. Note that the partition of X0
is not uniform, as seen most clearly in Fig. 9e.

H. 6D QUADROTOR WITH NOISE
Consider the 6D nonlinear quadrotor from [21], [47],

ẋ =
[
03×3 I3
03×3 03×3

]
︸ ︷︷ ︸

At

xt +

 g 0 0
03×3 0 −g 0

0 0 1

T
︸ ︷︷ ︸

Bt

tan(θ)tan(φ)
τ

︸ ︷︷ ︸

ut

+

[
05×1
−g

]
︸ ︷︷ ︸

ct

+ωt , (71)

which differs from [21], [47] in that we add ωt as a uni-
form process noise, and that the output is measured as
in (1) with Ct = I6, subject to uniform sensor noise.
As in [21], the state vector contains 3D positions and veloc-
ities, [px , py, pz, vx , vy, vz], while nonlinearities from [47]
are absorbed into the control as functions of θ (pitch), φ
(roll), and τ (thrust) (subject to the same actuator constraints
as [21]). We implemented a similar nonlinear MPC as [21]
in MATLAB to collect (xt ,ut) training pairs, then trained a
[32,32] NN with Keras as above. We use Euler integration to
account for (71) in our discrete time formulation.

Fig. 10 shows the reachable sets with and without noise.
Note that while these plots only show (x, y, z) position, the
reachable sets are estimated in all 6D. The first key takeaway
is that the blue boxes (Reach-LP with `∞-balls) provide
meaningful bounds for a long horizon (12 steps, 1.2s shown).
Secondly, unlike Reach-SDP, Reach-LP is guaranteed to
boundworst-case noise realizations. Computing these bounds
took a total of 0.11± 0.003 seconds.

I. HIGH-DIMENSIONAL SYSTEM
To demonstrate that Reach-LP scales to high-dimensional
systems, Fig. 11 uses the International Space Station (ISS)
Component 1R model,2 which has nx = 270 and nu =
3. After training a NN in the same manner as § VIII-A,
reachable sets for all 270 states were computed, with only
(x0, x1) shown. The average time for each reachability anal-
ysis is about 25.34 sec on a desktop computer with i7-9700K
CPU@3.60GHz (8 cores) and 32 GB RAM.

J. POLYNOMIAL DYNAMICS
To show the SDP-basedmethod from §VI-B on a systemwith
polynomial dynamics, we consider the Duffing oscillator
with the following dynamics

ẋ1 = x2, (72)

ẋ2 = −x1 − 2ζx2 − x31 + u, (73)

where x ∈ R2 and u ∈ R are the state and control inputs,
respectively, and ζ = 0.3 is the damping coefficient. Fur-
thermore, ct = 0, Ct = I2, zero noise is considered, and
the dynamics are discretized with sampling time ts = 0.3s.
We fit a neural network controller described in [48]. Applying
the techniques introduced in § VI-B, the reachable sets are
illustrated in Fig. 13. The estimated reachable sets contain
the sampled states, but due to the relaxation, the bounds of
the reachable sets are relatively loose compared to the linear
systems that did not require relaxations for the dynamics.

K. BACKWARD REACHABILITY
For the double integrator system and NN described in
§VIII-A, Fig. 12 shows one-step backprojection sets for a
given target set,XT . Recall that this NN is not invertible, both
because it uses ReLU activations and some weight matrix
dimensions prevent inversion.

The green rectangle represents XT = [2.5, 3.0] ×
[−0.25, 0.25].XT is partitioned into a uniform grid of various
resolution in (a)-(d), ranging from 2 × 2 to 16 × 16. The
estimated backprojection set of each cell is computed and
visualized as a red polytope. Thus, the estimated backprojec-
tion set of XT is the union of all red polytopes. In practice,
if XT represents a goal set, one could check that the sys-
tem’s starting state is inside one of the gray polytopes before
‘‘pressing go’’ on the system.

To demonstrate that points inside the backprojection set
will move the system to the target set under the NN control

2http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

VOLUME 9, 2021 163949

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

FIGURE 9. Reach-LP with Closed-Loop Greedy Simulation-Guided Partitioning. As X0 (red box) is partitioned, the reachable set estimates (blue boxes)
tighten to the Monte Carlo samples. Gray boxes show the reachable sets corresponding to cells of the X0 partition.

FIGURE 10. Reachable Sets for 6D Quadrotor. Only (x, y, z) states are
shown, even though the reachable sets are computed in 6D. Blue boxes
(Reach-LP) bound the clusters of sampled points at each discrete
timestep, starting from the blue X0. It took 0.11 sec to compute the 12
reachable sets per scenario. In (b),
ν ∼ Unif(±0.001 · 16), ω ∼ Unif(±0.005 · 16).

policy, we uniformly sampled points in each polytope of
the estimated backprojection set and simulated the system
forward one step (using the NN control policy). In Fig. 12,
the blue points represent these samples at timestep T −1, and
the orange points are the resulting system state at timestep
T . All of the orange points lie within the green rectangle of
XT , which suggests the backprojection sets were computed
properly.

Note that in (a), the under-approximation of the backpro-
jection set has some clear gaps. There are a few reasons for
this, but the key issue is that A = ∅ (from Algorithm 4) for
some of the cells of the XT partition. What causes A = ∅?
If XT is large, the backward reachable set could be as well.

FIGURE 11. Reachable Sets for the International Space Station (ISS)
dynamics model with 270 states and a NN controller. Reach-LP scales to
this high-dimensional system.

Thus, even a partitioned XT could lead to a large backward
reachable set partition, which is used as the NN input set
for CROWN. If the input set to CROWN is large, the NN
relaxations can be relatively loose. Loose bounds on the NN
restrict the size of P̄ , since P̄ only includes states for which
that entire range of relaxed control inputs will lead to XT
(see bottom arrow of Fig. 6). To get around this issue, (b)-(d)
repeat the analysis with finer partitions, which substantially
improves the coverage of samples across XT . Future work
could investigate better methods for partitioning XT (e.g.,
using simulation as guidance [20], [36]).

163950 VOLUME 9, 2021

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

FIGURE 12. 1-step Backprojection Sets for Double Integrator. The green rectangle represents XT , which is partitioned into an N × N grid in (a)-(d) for
various N . The estimated backprojection set of each cell of XT is computed and visualized as a single red polytope (when non-empty). Thus, the
estimated backprojection set of XT is the union of all red polytopes. To confirm the results, blue points are sampled from the estimated backprojection
sets, and the system state at the next timestep (under the NN control policy) are shown in orange. The orange points do indeed lie within XT , with better
coverage of XT as the number of partitions increases.

FIGURE 13. Reachable Sets for the Duffing oscillator. Starting from X0
(gray rectangle, blue samples), the Reach-LP extension from § VI-B is
used to estimate reachable sets for 6 timesteps into the future, despite
the nonlinear (polynomial) terms in the dynamics.

IX. FUTURE DIRECTIONS
Many open research directions remain in analyzing NFLs.
We first describe several natural extensions of this work.
One existing challenge is in mitigating the conservatism
due to the accumulation of approximation error over many
timesteps. This could be addressed, for example, by replacing
the recursive calculations with a method for computing n-step
reachable sets at once. In addition, capturing other types of
uncertainties and nonlinearities (e.g., uncertainty in At and
Bt matrices) will expand the set of neural feedback loops
that can be analyzed. Continuous time systems, which likely
have hybrid dynamics due to the NN control policy, present
additional opportunities for expanding the framework beyond
the Euler integration approach described here.

More broadly, an open challenge is in synthesizing prov-
ably robust control policies. While this work focused on
analyzing NFLs with a pre-trained NN, future work could
explore modifications to the training process to enable faster
or tighter online analysis. Moreover, bringing similar ideas to
stability analysis could provide additional notions of robust-
ness beyond reachability.

Finally, the adoption of these analysis methods on real
safety-critical systems will require realistic measurement/

perception models, as many modern systems use high-
dimensional sensors (e.g., camera, lidar), which are often fed
directly into perception NNs (e.g., for object detection or seg-
mentation). The effects of uncertainty propagating through
these modular pipelines presents new challenges before such
systems are ready to be deployed in safety-critical settings,
such as robots operating alongside humans.

X. CONCLUSION
This paper proposed a convex relaxation-based algorithm for
computing forward reachable sets and backprojection sets of
NFLs, which are closed-loop systems with NN controllers.
Prior work is limited to shallow NNs and is computationally
intensive, which limits applicability to real systems. Further-
more, our method accounts for measurement of sensor and
process noise, as well as nonlinearities in the dynamics. The
results show that this work advances the state-of-the-art in
guaranteeing properties of systems that employ NNs in the
feedback loop.

REFERENCES
[1] R. Ehlers, ‘‘Formal verification of piece-wise linear feed-forward neural

networks,’’ in Proc. ATVA, 2017, pp. 269–286.
[2] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,

‘‘Reluplex: An efficient SMT solver for verifying deep neural networks,’’
in Proc. 29th Int. Conf. CAV, Heidelberg, Germany, Jul. 2017, pp. 97–117.

[3] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, ‘‘Safety verification of
deep neural networks,’’ in Computer Aided Verification, R. Majumdar and
V. Kunčak, Eds. Cham, Switzerland: Springer, 2017, pp. 3–29.

[4] A. Lomuscio and L. Maganti, ‘‘An approach to reachability analysis
for feed-forward Relu neural networks,’’ CoRR, vol. abs/1706.07351,
pp. 1–10, Jun. 2017.

[5] V. Tjeng, K. Y. Xiao, and R. Tedrake, ‘‘Evaluating robustness of neural
networks with mixed integer programming,’’ in Proc. Int. Conf. Learn.
Represent. (ICLR), 2019, pp. 1–21.

[6] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, ‘‘AI2: Safety and robustness certification of neural networks
with abstract interpretation,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 3–18.

[7] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, ‘‘On the effectiveness of inter-
val bound propagation for training verifiably robust models,’’ 2018,
arXiv:1810.12715.

[8] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning,
and I. Dhillon, ‘‘Towards fast computation of certified robustness for Relu
networks,’’ inProc. Int. Conf. Mach. Learn. (ICML), 2018, pp. 5276–5285.

[9] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, ‘‘Fast and
effective robustness certification,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 10802–10813.

VOLUME 9, 2021 163951

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

[10] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, ‘‘Efficient
neural network robustness certification with general activation functions,’’
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4939–4948.

[11] E. Wong and J. Z. Kolter, ‘‘Provable defenses against adversarial examples
via the convex outer adversarial polytope,’’ in Proc. ICML, vol. 80, 2018,
pp. 5283–5292.

[12] A. Raghunathan, J. Steinhardt, and P. Liang, ‘‘Certified defenses against
adversarial examples,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2018,
pp. 1–15.

[13] M. Fazlyab, M. Morari, and G. J. Pappas, ‘‘Safety verification and robust-
ness analysis of neural networks via quadratic constraints and semidefinite
programming,’’ 2019, arXiv:1903.01287.

[14] C. J. Tomlin, J. Lygeros, and S. S. Sastry, ‘‘A game theoretic approach
to controller design for hybrid systems,’’ Proc. IEEE, vol. 88, no. 7,
pp. 949–970, Jul. 2000.

[15] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, ‘‘Hamilton–Jacobi
reachability: A brief overview and recent advances,’’ in Proc. IEEE 56th
Annu. Conf. Decis. Control (CDC), Dec. 2017, pp. 2242–2253.

[16] S. Dutta, X. Chen, and S. Sankaranarayanan, ‘‘Reachability analysis for
neural feedback systems using regressive polynomial rule inference,’’ in
Proc. 22nd ACM Int. Conf. Hybrid Syst., Comput. Control, Apr. 2019,
pp. 157–168.

[17] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, ‘‘ReachNN: Reachability
analysis of neural-network controlled systems,’’ ACM Trans. Embedded
Comput. Syst., vol. 18, no. 5, pp. 1–22, Oct. 2019.

[18] J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu, ‘‘ReachNN: A tool for
reachability analysis of neural-network controlled systems,’’ in Proc. Int.
Symp. Autom. Technol. Verification Anal. New York, NY, USA: ACM,
2020, pp. 537–542.

[19] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, ‘‘Verisig: Verifying
safety properties of hybrid systems with neural network controllers,’’
in Proc. 22nd ACM Int. Conf. Hybrid Syst., Comput. Control, 2019,
pp. 169–178.

[20] W. Xiang, H.-D. Tran, X. Yang, and T. T. Johnson, ‘‘Reachable set estima-
tion for neural network control systems: A simulation-guided approach,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 1821–1830,
May 2021.

[21] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas, ‘‘Reach-SDP: Reach-
ability analysis of closed-loop systems with neural network controllers
via semidefinite programming,’’ in Proc. 59th IEEE Conf. Decis. Control
(CDC), Dec. 2020, pp. 5929–5934.

[22] L. C. Evans, Partial Differential Equations (Graduate Studies in Mathe-
matics), vol. 19, no. 2. Boston, MA, USA: International Press of Boston,
1998.

[23] M. Everett, G. Habibi, and J. P. How, ‘‘Efficient reachability analysis of
closed-loop systems with neural network controllers,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2021, pp. 4384–4390.

[24] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ in Proc. Int.
Conf. Learn. Represent. (ICLR), 2014, pp. 1–10.

[25] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, ‘‘SpaceEx: Scalable verifi-
cation of hybrid systems,’’ in Proc. Int. Conf. Comput. Aided Verification.
Berlin, Germany: Springer, 2011, pp. 379–395.

[26] X. Chen, E. Ábrahám, and S. Sankaranarayanan, ‘‘Flow: An analyzer for
non-linear hybrid systems,’’ in Proc. Int. Conf. Comput. Aided Verification.
Berlin, Germany: Springer, 2013, pp. 258–263.

[27] M. Althoff, ‘‘An introduction to CORA 2015,’’ in Proc. Workshop Appl.
Verification Continuous Hybrid Syst., 2015, pp. 1–28.

[28] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, ‘‘C2E2: A
verification tool for stateflowmodels,’’ inProc. Int. Conf. Tools Algorithms
Construct. Anal. Syst. Berlin, Germany: Springer, 2015, pp. 68–82.

[29] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, ‘‘Automatic
reachability analysis for nonlinear hybrid models with C2E2,’’ in Proc.
Int. Conf. Comput. Aided Verification. Cham, Switzerland: Springer, 2016,
pp. 531–538.

[30] A. Papachristodoulou and S. Prajna, ‘‘On the construction of Lyapunov
functions using the sum of squares decomposition,’’ in Proc. 41st IEEE
Conf. Decis. Control, vol. 3, Dec. 2002, pp. 3482–3487.

[31] A. D. Ames, X. Xu, J.W.Grizzle, and P. Tabuada, ‘‘Control barrier function
based quadratic programs for safety critical systems,’’ IEEE Trans. Autom.
Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[32] G. Yang, G. Qian, P. Lv, and H. Li, ‘‘Efficient verification of control
systems with neural network controllers,’’ in Proc. 3rd Int. Conf. Vis.,
Image Signal Process., Aug. 2019, pp. 1–7.

[33] S. Diamond and S. Boyd, ‘‘CVXPY: A Python-embedded modeling lan-
guage for convex optimization,’’ J. Mach. Learn. Res., vol. 17, no. 1,
pp. 2909–2913, Jan. 2016.

[34] M. Everett, B. Lütjens, and J. P. How, ‘‘Certifiable robustness to
adversarial state uncertainty in deep reinforcement learning,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Feb. 15, 2021, doi:
10.1109/TNNLS.2021.3056046.

[35] W. Xiang, H.-D. Tran, and T. T. Johnson, ‘‘Output reachable set estimation
and verification formultilayer neural networks,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 11, pp. 5777–5783, Mar. 2018.

[36] M. Everett, G. Habibi, and J. P. How, ‘‘Robustness analysis of neural
networks via efficient partitioning with applications in control systems,’’
IEEE Control Syst. Lett., vol. 5, no. 6, pp. 2114–2119, Dec. 2021.

[37] P. A. Parrilo and B. Sturmfels, ‘‘Minimizing polynomial functions,’’ in
Algorithmic and Quantitative Real Algebraic Geometry (DIMACS Series
inDiscreteMathematics and Theoretical Computer Science), vol. 60. 2003,
pp. 83–99.

[38] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, ‘‘Semidefinite
relaxation of quadratic optimization problems,’’ IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[39] L. Ardizzone, J. Kruse, C. Rother, and U. Köthe, ‘‘Analyzing inverse
problems with invertible neural networks,’’ in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–20.

[40] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H. Jacobsen,
‘‘Invertible residual networks,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 573–582.

[41] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang, B. Kailkhura,
X. Lin, and C.-J. Hsieh, ‘‘Automatic perturbation analysis for scalable
certified robustness and beyond,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 1–13.

[42] K. Xu, H. Zhang, S.Wang, Y.Wang, S. Jana, X. Lin, and C.-J. Hsieh, ‘‘Fast
and complete: Enabling complete neural network verification with rapid
and massively parallel incomplete verifiers,’’ in Proc. Int. Conf. Learn.
Represent., 2021, pp. 1–15.

[43] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter,
‘‘Beta-CROWN: Efficient bound propagation with per-neuron split con-
straints for complete and incomplete neural network robustness verifica-
tion,’’ 2021, arXiv:2103.06624.

[44] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[45] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io
[46] E. D. Andersen andK.D. Andersen, ‘‘TheMOSEK interior point optimizer

for linear programming: An implementation of the homogeneous algo-
rithm,’’ in High Performance Optimization. Springer, 2000, pp. 197–232.

[47] D. M. Lopez, P. Musau, H.-D. Tran, and T. T. Johnson, ‘‘Verification of
closed-loop systems with neural network controllers,’’ EPiC Ser. Comput.,
vol. 61, pp. 201–210, May 2019.

[48] T. Dang and R. Testylier, ‘‘Reachability analysis for polynomial dynamical
systems using the Bernstein expansion,’’ Rel. Comput., vol. 17, no. 2,
pp. 128–152, 2012.

MICHAEL EVERETT (Member, IEEE) received
the S.B., S.M., and Ph.D. degrees in mechani-
cal engineering from the Massachusetts Institute
of Technology (MIT), in 2015, 2017, and 2020,
respectively. He is currently a Research Scientist
with the Department of Aeronautics and Astronau-
tics, MIT. His research interests include machine
learning, robotics, and control theory, with specific
interests in the theory and application of safe and
robust neural feedback loops. He was an author of

works that won the Best Paper Award on Cognitive Robotics at IROS 2019,
the Best Student Paper Award, and a Finalist for the Best Paper Award on
Cognitive Robotics at IROS 2017, and a Finalist for the Best Multi-Robot
Systems Paper Award at ICRA 2017. He has been interviewed live on the air
by BBC Radio and his team’s robots were featured by Today Show and the
Boston Globe.

163952 VOLUME 9, 2021

http://dx.doi.org/10.1109/TNNLS.2021.3056046

M. Everett et al.: Reachability Analysis of Neural Feedback Loops

GOLNAZ HABIBI (Member, IEEE) received the
B.Sc. degree in electrical and control engineering
from the K. N. Toosi University of Technology,
Iran, in 2005, the M.Sc. degree in control engi-
neering from Tarbiat Modares University, Iran,
in 2007, and the Ph.D. degree in computer sci-
ence from Rice University, in 2015. She is
currently a Research Scientist with the Depart-
ment of Aeronautics and Astronautics, MIT.
Her research interests include robotics, control

systems, machine learning, multi agent systems, visual navigation, reliable
communication, and improving the safety and reliability of autonomous
agents. Her paper has been nominated for best student paper award in
DARS 2012 and she received the K2I award by Chevron Corporation,
in 2013.

CHUANGCHUANG SUN (Member, IEEE)
received the B.S. degree in aerospace engineering
from the Beijing University of Aeronautics and
Astronautics, China, in 2013, and the Ph.D. degree
in aerospace engineering from Ohio State Univer-
sity, in August 2018. He is currently a Postdoctoral
Associate with the Department of Aeronautics and
Astronautics, MIT. His research interests include
control, optimization, reinforcement learning with
applications in robotics, and space systems.

JONATHAN P. HOW (Fellow, IEEE) received
the B.A.Sc. degree in aerospace from the Univer-
sity of Toronto in 1987, and the S.M. and Ph.D.
degrees in aeronautics and astronautics from MIT,
in 1990 and 1993, respectively, and then studied
for 1.5 years at MIT as a Postdoctoral Associate.
Prior to joining MIT in 2000, he was an Assis-
tant Professor with the Department of Aeronautics
and Astronautics, Stanford University. He was the
Editor-in-Chief of the IEEE Control Systems Mag-

azine (2015–2019). He is currently an Associate Editor of the AIAA Journal
of Aerospace Information Systems and the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS. He is also the Richard C. Maclaurin
Professor in the Department of Aeronautics and Astronautics with the Mas-
sachusetts Institute of Technology. He was an Area Chair of the International
Joint Conference on Artificial Intelligence, in 2019, and will be the Program
Vice-Chair (tutorials) for the Conference on Decision and Control, in 2021.
He was elected to the Board of Governors of the IEEE Control System Soci-
ety (CSS), in 2019, and is a member of the IEEE CSS Technical Committee
on Aerospace Control and the Technical Committee on Intelligent Control.
He is also the Director of the Ford-MIT Alliance and was a member of the
USAF Scientific Advisory Board (SAB), from 2014 to 2017. His research
focuses on robust planning and learning under uncertainty with an emphasis
onmulti-agent systems, and he was the planning and control lead for theMIT
DARPA Urban Challenge team. His work has been recognized with multiple
awards, including the 2020 AIAA Intelligent Systems Award. He is a fellow
of AIAA.

VOLUME 9, 2021 163953

