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Abstract—This paper presents a novel framework for accurate
pedestrian trajectory prediction in intersection corners or near
crosswalks. Given prior knowledge of curbside geometry (i.e.
angle made by intersecting curbs at the corner point of interest
and the coordinates of the corner itself), the presented framework
can accurately predict pedestrian trajectories even in new, unseen
intersections. This is achieved by learning motion primitives in
a common frame, called the curbside coordinate frame. A key
insight in developing this common frame is to ensure that trajec-
tories from intersections with different geometries, representing
the same behavior, are spatially similar in the common frame.
Motion primitives learned in such a common frame, can then be
easily generalized to predict in new intersections, with different
geometries than the ones trained on. We test our algorithm on
real pedestrian trajectory datasets collected at two intersections,
with distinctly different curbside and crosswalk geometries. A
comparison of our algorithm with [1] demonstrates improved
prediction accuracies of pedestrian trajectory prediction in the
case of same training and test intersections, and the improvement
of accuracy in the most different training and test intersections
scenarios. The result also shows additional context, such as infor-
mation about pedestrian traffic lights, if available, can be easily
incorporated in our prediction model for further improvement
in prediction accuracy.

Index Terms—Pedestrian motion prediction, skewed coordinate
system, Contravariant components, affine transformation, motion
primitives, common frame, transferable model, Gaussian Process,
sparse coding

I. INTRODUCTION

Increased safety of road travelers and a consequent reduction
in road accident fatality rate has been the main driver of
research on advanced driver-assistance systems (ADAS) and
self-driving cars. Recent advances in computation power and
an increase in the amount of publicly available training datasets
provided a boost to the application of state-of-the-art machine
learning approaches in this field.

Safe and reliable operation of self-driving cars in busy, urban
scenarios requires interaction with multiple moving agents like
cars, cyclists and pedestrians. Motion prediction of pedestrians
is more challenging than that of cars (and to some extent,
cyclists) because of the absence of uniform pedestrian “rules
of the road” like staying within road boundaries, following
lanes etc. The few pedestrian “rules” that exist are often unclear
and frequently violated. The problem is further complicated in
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Figure 1: An illustration to show how points PA(xA,yA) on the
red trajectory in intersection I1 and PB(xB,yB) on the purple
trajectory in intersection I2, under the transformation T , map
to points P′A(x

′
A,y
′
A) and P′B(x

′
B,y
′
B) in the curbside coordinate

frame. We show that T is in general an affine transformation.
Since pedestrian trajectories in urban intersections are signif-
icantly constrained by the curbsides, transforming them into
the curbside coordinate frame using an affine transformation,
intuitively would map trajectories with similar pedestrian
motion behavior approximately on top of each other in the
curbside coordinate frame. This insight helps in developing a
general trajectory prediction model.

intersection scenarios, where additional context, such as tightly
packed sidewalks and traffic lights or stop signs, influences
pedestrian movement. Furthermore, intersection geometry, such
as position and shape of curbsides, also significantly influences
pedestrian movement. It is practically impossible to collect
data, and train on every different type of intersection geometry.
Therefore, there exists a need for a general prediction algorithm,
which when trained on one intersection, can be generalized to
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predict in new, unseen intersections, with similar situational
context, but varying geometries.

Chen et al. [2] combine the merits of Markovian-based and
clustering-based techniques to show significant improvement
over state-of-the-art clustering methods for pedestrian trajectory
prediction. However, their approach fails to incorporate context
and is based on motion primitives learned using spatial
features (x,y position in the car frame) specific to the training
environment. Most of the previous work on context-based
pedestrian intent recognition is limited to the identification of
stopping versus crossing intent [3]–[9], as opposed to long
term trajectory prediction. The latter can can provide additional,
useful information to the self-driving vehicle for planning its
future course of action. Such as how much time would it take
for someone to cross the road, which crosswalk/path would
be used, etc. Furthermore, the use of spatial context features
like orthogonal distance to curbside [6]–[8] makes these intent
classification models directly dependent on the specific training
intersection geometry, and prevents generalization to new
intersections with varying curbside geometries. Bonnin et
al. [10] developed a more generic, context-based, multi-model
system for predicting crossing behavior in inner-city situations
and zebra crossings. However, the output of their prediction
model is again a crossing probability as opposed to predicted
future trajectory.

Coscia et al. [11] forecast long-term behavior of pedestrians
by making use of past observed patterns and semantic segmen-
tation of a bird’s eye view of the scene. Such an approach,
when applied in the real world, would require accurate high
definition semantic maps of each scene, which are expensive
to create and maintain. It is also unclear if their prediction
model can be generalized to new, unseen scenes. Ballan et
al. [12] and Sadeghian et al. [13] follow a similar approach to
path prediction while also demonstrating the ability to “transfer
knowledge”. However, a prior bird’s eye view of the scene is
needed for both these approaches as well. Our approach encodes
situational context and provides a transferable prediction model,
which can be generalized to predict in corners of new, unseen
intersections, without needing a high-definition prior map. The
key idea that enables this generalization is the use of a simple
prior on curbside geometry (i.e. angle made by intersecting
curbs at the corner point of interest and the coordinates of the
corner) to construct a common “curbside coordinate frame”,
such that trajectories with similar intent are spatially similar
in this common frame (see Fig. 1). While high-definition prior
maps are not a limiting constraint for the application of the
proposed method, if available, the presented framework is
general enough to incorporate context information embedded
in such maps.

[1] introduced a transferable pedestrian prediction model
at intersections using inverse reinforcement learning (IRL).
In their work, the trajectory is predicted by inferring the
pedestrian intent at intersection. However, goal locations as
the potential intents need to be selected based on the semantic
contexts. Moreover, this approach requires a map including
some semantic contexts around the intersection to construct

the feature vector for the learning model. We evaluate our
proposed algorithm in two different intersections and compare
it with previous work [1]. Our algorithm outperforms the
previous approach when the trained and test environment are
the same. When the trained and test intersections are different,
our approach performs better than [1] except one case.

The main contributions of this work are as follows: (i)
Introduction of the “curbside coordinate frame” as a common
frame in which spatially dissimilar trajectories from different in-
tersections, representing the same underlying pedestrian intent,
are spatially similar (see Fig. 1); (ii) Introduction of a novel
representation of distance to curbside as the contravariant
components of pedestrian positions in the curbside coordinate
frame (can be orthogonal or skewed). This representation
ensures that distance to curbside, as a context feature, is
independent of intersection geometry (as opposed to other
representations such as orthogonal distance to curbside); (iii)
Proof of the fact that the transformation of trajectories from
the car frame, into the curbside coordinate frame, is affine.
Such a transformation, therefore, preserves properties such as
collinearity, parallelism etc. across intersections while encoding
context (see Fig. 1); (iv) Transferable Augmented Semi
Nonnegative Sparse Coding (TASNSC), as a context-based
pedestrian trajectory prediction model for accurate, long term
(≈ 5 seconds) prediction in corners of new, unseen intersections
with similar semantic cues as the ones that the model is trained
on.

II. PRELIMINARIES

In this section, we first briefly review the Augmented Semi-
Nonnegative Sparse Coding (ASNSC) algorithm. Out of other
prior approaches [14]–[17], ASNSC was chosen for learning
motion primitives in this work, because of its ease of direct
application to the task of pedestrian trajectory prediction [2],
[18]. This is followed by a review of covariant and contravariant
components of a position vector in a skewed coordinate system.

A. Augmented Semi-Nonnegative Sparse Coding (ASNSC)

Given a training dataset of pedestrian trajectories in a
discretized world, i.e. D : {ti}, ASNSC learns a set of L
motion primitives, i.e. B : {m1, . . . ,mL} (see Fig. 2(a)). Here,
a ‘trajectory’ is a sequence of two-dimensional position
measurements, taken at a fixed time interval. ti is the vectorized
representation of the i-th trajectory, s.t. ti ∈RK , where K is the
number of cells in the discretized world, and the j-th element
of ti, is its average velocity in the j-th cell of the discretized
world.

As shown in Fig. 2(b), B is used to segment the original
training trajectories into clusters, where each cluster is best
explained by one of the learned motion primitives. A transition
matrix (R) is thus created, where R(i, j) is the set of trajectories
exhibiting a transition from mi to m j for off-diagonal elements,
and the set of trajectories ending in mi for the diagonal elements.
Each transition, i.e. {mi,m j|R(i, j) 6= /0}, is modeled as a two-
dimensional Gaussian Process (GP) flow field [19], [20]. In
particular, two independent GPs, (GPx,GPy), are used to learn
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a mapping from the two-dimensional position features to the x
and y velocities respectively, for each transition.

Given an observed trajectory (to), if the unitary motion
pattern that most likely generated to is given by {mp|R(p, p) 6=
/0}, a set of predicted trajectories, along with the likelihood
of each, is given by the motion patterns starting in mp, i.e.
{mp,mq|R(p,q) 6= /0} ∀ q.

(a) (b)

Figure 2: (a) Each color represents a motion primitive (mk)
learned using ASNSC in a discretized world; (b) Segmentation
of training trajectories (in gray) into clusters, where each cluster
is best explained by the motion primitive of the same color in
(a).

j

i

(a) (b) (c)

Figure 3: (a) Orthogonal coordinate system; (b) Skewed
coordinate system; (c) Calculation of contravariant components
in a skewed coordinate system using trigonometry

B. Covariant and contravariant components of vectors in a
skewed coordinate system

As shown in Fig. 3(a) and Fig. 3(b), a coordinate system can
be either orthogonal (represented by unit vectors î, ĵ) or skewed
(represented by unit vectors ê1, ê2). In an orthogonal coordinate
system, covariant and contravariant components of a position
vector are perfectly aligned. A position vector in such a system
has only one representation i.e.~r = x1 î+y1 ĵ (see Fig. 3(a)). In
a skewed coordinate system, the covariant components (x1,y1)
and contravariant components (x1,y1) of a position vector do not
align. The same position vector, in such a system, can be rep-
resented using both its covariant and contravariant components.
Representing it using the contravariant components is more
standard since this representation is compatible with the rule of
vector sums, i.e.~r = x1ê1+y1ê2 (see Fig. 3(b)). However, since
(ê1 · ê2) 6= 0 in a skewed coordinate system, r2 6= (x1)2 +(y1)2

in general. As shown in Fig. 3(c), basic trigonometric identities
can instead be used for computing the contravariant components

of a position vector in a skewed coordinate system (Note that
0 < α < π in the following equations).

x1 = r sin(α−θ)/sinα (1)

y1 = r sinθ/sinα (2)

To meet the objective of pedestrian trajectory prediction
in urban intersections, where curbside geometry significantly
constraints pedestrian motion, learning motion primitives and
their transition in the curbside coordinate frame X ′Y ′ (instead
of an arbitrarily placed, car frame XY , as shown in Fig. 1), can
help improve prediction accuracies because of the addition of
context. Furthermore, the curbside coordinate frame provides a
common frame in which trajectories from different intersections,
with the same underlying intent, are spatially similar. Thus,
learning motion primitives in this common frame aids in
developing a context-aware prediction model that can be
generalized to predict in any intersection.

III. ALGORITHM

As discussed earlier, designing a general, transferable predic-
tion model requires encoding features that are independent of
the specific training intersection geometry. In this section, we
show that any point on a pedestrian trajectory, when mapped
from the original, arbitrarily placed car frame, into the common
curbside coordinate frame, using a transformation/mapping
function as defined in the following text, undergoes an affine
transformation. The choice of the curbside coordinate frame,
as the common frame into which trajectories from different
intersections are mapped, can be justified by the fact that
pedestrian trajectories are significantly constrained by curbsides
in intersections. Since an affine transformation preserves
properties such as collinearity, ratios of distances, parallelism
etc., the situational context of pedestrian trajectories, i.e. shape
and relative distance with respect to curbsides, is preserved
under such a transformation (see Fig. 4 and Fig. 5).

Definition 1. A coordinate frame with its origin at the
intersection corner of interest, and its axes along the two
curbsides intersecting at the chosen corner, is defined as the

“intersection frame” (XIYI in I1 and I2 in Fig. 1). An intersection
frame can be either orthogonal or skewed.

Definition 2. Given a point P(x,y), on an observed trajectory
to, in the arbitrarily placed car frame (i.e. XY frame in I1
and I2 in Fig. 1), let us define a transformation T : to→ t ′o
in a common frame C (see Fig. 1), s.t. P(x,y)→ P′(x′,y′),
where x′,y′ are the contravariant components of P′ in the
intersection frame. We call this common frame C as the

“curbside coordinate frame”.

Lemma 1. T is an affine transformation

Proof. Given the original, orthogonal car frame O and an
intermediate, helper coordinate system H (also orthogonal
but with its origin at the intersection corner and its x-axis
parallel to the x-axis of intersection corner axis I) T H

O and TC
H
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represent the coordinate transformation from O to H and H to
C respectively, then T = TC

HT H
O .(

x′

y′

)
= T

(
x
y

)
= TC

HT H
O

(
x
y

)
(3)

Since, T H
O is simply a combination of rotation and translation,

it is an affine transformation. Let us now assume that the
original point P(x,y) in O maps to P∗(x∗,y∗) in H, and r is
the distance of P∗ from the origin: (x∗)2 +(y∗)2 = r2. Note
that, by definition, the origin and x-axis of H overlap with the
origin and x-axis of C. From Fig. 3(c), if θ is the angle made
by the position vector with the x-axes,

x∗ = r cosθ ,y∗ = r sinθ (4)

Therefore, from (1), (2) and (4), if α , 0 < α < π is the angle
between the intersecting curbsides, P′(x′,y′) can be written as

x′ = (r cosθ sinα− r sinθ cosα)/sinα (5)
=⇒ x′ = x∗− y∗/ tanα (6)

y′ = r sinθ/sinα = y∗/sinα (7)

Note that (6), (7) can be combined and written in matrix form
as (

x′

y′

)
= TC

H

(
x∗

y∗

)
=

(
1 −1/ tanα

0 1/sinα

)(
x∗

y∗

)
(8)

For a given α , TC
H linearly maps (x∗,y∗) to (x′,y′) and hence,

is an affine transformation. Furthermore, since T H
O and TC

H are
both affine transformations, T is also an affine transformation
by (3). For the special case which of an intersection with
orthogonal curbsides, α = π/2, TC

H is the identity matrix, and
hence, transformed position vector components in the common
curbside frame are the same as the original position vector
components in the car frame.

Since T is affine, all general properties of an affine transform
hold under T , i.e.
• Collinearity is preserved
• Parallel lines remain parallel
• Convexity of sets is preserved
• Ratios of distances are preserved i.e. the midpoint of a

line segment remains the midpoint of the transformed line
segment

As discussed earlier, since the objective of this paper is
pedestrian motion estimation in urban intersections, which is
highly constrained by curbside geometry, mapping pedestrian
trajectories into the curbside coordinate frame helps in repre-
senting trajectories from intersections with different geometries
in a common frame. This aids in building a context-aware,
general prediction model.

Algorithm 1 describes TASNSC as a transferable version of
the ASNSC algorithm. Given the curbside unit vectors (ê1, ê2)
of the training intersection, T is used to map the training
trajectories from the local, arbitrary placed car frame into the
common curbside coordinate frame. Motion primitives are then
learned in the curbside coordinate frame using ASNSC (line
4). For trajectory prediction in an unseen intersection, first the

Algorithm 1: Transferable ASNSC (TASNSC)
input : curbside unit vectors of training intersection (~e1, ~e2),

set of training trajectories in car frame (Dc), curbside
unit vectors of test intersection (~e′1,

~e′2) and observed
trajectory t0

output : predicted the future trajectory in car frame (tp)
/* Training Phase */

1 D = {}
2 for ∀ ti ∈Dc do

/* map training trajectories to curbside frame */

3 t ′i = T (~e1, ~e2, ti) D ←{D , t ′i}
/* learn motion primitives in curbside frame */

4 {B,S}= ASNSC(D)
/* Prediction Phase */
/* map observed trajectory to curbside frame */

5 t ′o = T (~e′1,
~e′2, to)

/* set of predicted trajectories in curbside frame */

6 t ′p = predict(B, t ′o) tp = T −1(t ′p)
7 return tp

Algorithm 2: Transformation T

input : curbside unit vectors (~e1, ~e2) and trajectory in car
frame ti

output : trajectory in common curbside frame t ′i
1 α ← cos−1(~e1.~e2) ; // angle between ~e1 and ~e2

2 for ∀ Pj(x j,y j) ∈ ti do
3 x j

′← r sin(α−θ)/sinα ; // Fig. 3(c), 0≤ θ ≤ 2π

4 y j
′← r sinθ/sinα ; // 0 < α < π

5 return ti′ = {(x j
′,y j
′)}

observed trajectory is transformed into the common curbside
coordinate frame using T (line 5). Motion primitives and their
transitions, learned in the common curbside coordinate frame,
are then used for prediction, followed by a transformation
of the predicted trajectory into the original, car frame of the
test intersection (line 6). Algorithm 2 describes the procedure
for transformation of pedestrian trajectories under T . Fig. 4
and Fig. 5 show the transformation of trajectories into the
curbside coordinate frame under T for an orthogonal and
skewed coordinate system respectively.

Figure 4: Original (left) and transformed trajectories in the
curbside coordinate frame (right) under the transformation T ,
when the curbs are orthogonal to each other. Trajectories are
shown in blue and shaded gray area denotes the sidewalk.
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Figure 5: Original (left) and transformed trajectories in the
curbside coordinate frame (right) under the transformation T ,
when the curbs are skewed. Trajectories are shown in blue and
shaded gray area denotes the sidewalk.

IV. RESULTS

A. Dataset description

We test our algorithm on real pedestrian data collected by
a Polaris GEM vehicle equipped with three Logitech C920
cameras and a SICK LMS151 LIDARa [21], [22]. A prior
occupancy grip map of the environment, created using the
on-board LIDARs, is used to extract curbside boundaries.
However, as long as the intersection corner is not crowded by
obstructions such as trees, it is possible to detect the curbside
online. Real pedestrian trajectories are collected in two different
intersections (see Fig. 7). The dataset collected in intersection
I1, with nearly orthogonal curbsides, consists of 186 training
and 32 test trajectories while that collected in intersection I2,
with skewed curbsides, consists of 114 training and 22 test
trajectories. An observation history of 2.5 seconds prior to the
pedestrian entering the intersection is used to predict 5 seconds
ahead in time.

B. Experiment details

Two experiments were conducted for evaluating the pre-
diction performance of TASNSC. In the first experiment, the
training and test intersections are the same. While in the second
experiment, the training and test intersections are different. The
prediction performance of TASNSC in both these experiments
is compared with a prior, inverse reinforcement learning based
prediction model that has been shown to generalize to new,
unseen intersections [1]. (We call this model ‘Transferable IRL’
in the rest of the paper for brevity).

Fig. 6 shows qualitative results of prediction performance
of TASNSC in different scenarios. The output of TASNSC,
similar to ASNSC, is a set of predicted trajectories with the
likelihood of each. Such an output is desired for application
of state-of-art uncertainty aware probabilistic planners [23].
However, in all the plots in Fig. 6, only the predicted trajectory
with the maximum likelihood is shown for clarity.

We use three metrics to evaluate prediction performance: (i)
computation time for predicting a new trajectory; (ii) Modified
Hausdorff Distance (MHD) [24] is an object-matching metric
and is used to compare predicted trajectories with ground truth.

More simply, it measures the average distance between points
on the predicted trajectory and actual observed trajectory, for
the same time stamps; (iii) distLast represents the distance
between the last point on the prediction trajectory and the
ground truth.

Since TASNSC provides a set of predicted trajectories with
the likelihood of each, for both MHD and distLast, if a set of
n trajectories is predicted as {t1, . . . , tn}, with their likelihood
of prediction given by {l1, . . . , ln}, and their prediction error
(either MHD or distlast) denoted by ei, the weighted prediction
error is computed as follows:

Weighted prediction error =
∑

n
i=1 liei

∑
n
k=1 lk

(9)

As is clear from the comparison in Table I, TASNSC
outperforms Transferable IRL [1] in all scenarios, when trained
and tested on the same intersection. Furthermore, TASNSC
performs better even when trained and tested on different
intersections, in all scenarios except for one, in which the
training environment is an orthogonal intersection (I1) and
the model predicts on a skewed intersection (I2). This is a
challenging scenario and the better performance of Transferable
IRL in this case can be attributed to its use of a set of
semantic labels as context features. While TASNSC, on the
other hand, predicts with a prior on curbside geometry only. In
all scenarios, TASNSC is 4-10 times faster than Transferable
IRL in predicting the future trajectory.

Algorithm Train Test MHD Time
on on (m) (sec)

Transferable IRL I1 I1 1.44 0.61
TASNSC I1 I1 0.65 0.08
Transferable IRL I2 I1 1.67 0.61
TASNSC I2 I1 1.28 0.06
Transferable IRL I1 I2 1.70 0.35
TASNSC I1 I2 1.79 0.07
Transferable IRL I2 I2 2.03 0.35
TASNSC I2 I2 1.27 0.09

Table I: Quantitative performance comparison of TASNSC with
transferable IRL [1]

Algorithm Train Test MHD distLast
on on (m) (m)

TASNSC I1 I2 1.72 4.41
(with traffic light) I2 I1 0.80 2.14
TASNSC I1 I2 1.79 4.63
(without traffic light) I2 I1 1.28 2.98

Table II: Quantitative performance comparison of TASNSC
with and without pedestrian traffic light added as a context
feature

C. Pedestrian traffic Light as context
Adding context, such as pedestrian traffic light status, in the

GP based motion patterns representing transition between mo-
tion primitives, boosts prediction performance of TASNSC [25].

3129

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 22:31:41 UTC from IEEE Xplore.  Restrictions apply. 



Figure 6: Prediction results of TASNSC in intersection I1 when the model is trained in I2 (top) and results of TASNSC in
intersection I2 when the model is trained in I1 (bottom), Ground truth is shown in dotted blue, observed trajectory in pink
& predicted trajectory in red. The result shows TASNSC performs well in different scenarios. In Figure top right scenario,
TASNSC correctly estimates the direction of future trajectory. However, TASNSC does not predict the pedestrian stops at
intersection as it does. In general TASNSC only learns the orientation of the velocity, not velocity magnitude. Considering the
velocity profile can improve the prediction which is left for the future work (see section V)

Furthermore, the best prediction performance, in terms of
both MHD and distLast is achieved by TASNSC trained in
intersection I1 and tested on I2 and vice versa (see Table II).

V. CONCLUSION

This paper has introduced a common frame for pedestrian
trajectory prediction, called the “curbside coordinate frame”.
Pedestrian trajectories from intersections of different shapes,
representing the same behavior, are spatially similar when
mapped into this common frame. We leverage curbside co-
ordinate frame to develop TASNSC as a general, accurate
pedestrian trajectory prediction model for urban intersections.
Training trajectories are first mapped into the proposed common
frame. The ASNSC framework is then used for learning motion
primitives and subsequently, modeling the transition between
these learned primitives in the common frame. The motion
primitives and their transition, thus learned, not only encode
situational context in the form of distance to curbside, but
are also agnostic to the specific training intersection geometry.
Such motion primitives, can therefore, be used for prediction

in new, unseen intersections with different curbside geometries
by mapping the observed trajectory into the common frame.
We test our algorithm on two different intersections, one
with almost orthogonal curbsides and the other with skewed
curbsides. TASNSC significantly outperforms IRL approach [1],
when trained and tested on the same intersection. When trained
and tested on different intersections, TASNSC has a better
prediction than IRL in all scenarios except for one. Addition
of traffic light as an additional context feature in the GP based
transition models helps further boost prediction performance
of TASNSC.

Our approach is limited by the need for a prior on curb-
side geometry. Vectorized road maps are an easy and low-
maintenance source of obtaining the required prior. Addition-
ally, one might also argue that curbsides can be detected on-line
as the vehicle approaches an intersection corner of interest,
observability can be an issue because of occlusions and/or a
limited field of view of on-board perception sensors. Therefore,
there is a need to explore the robustness of our prediction
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Figure 7: An overhead snapshot of intersection I1 with
orthogonal curbsides (left) and intersection I2 with skewed
curbsides (right). The training dataset, shown in blue, consists
of pedestrian trajectories collected using a 3D LIDAR and cam-
era on-board a Polaris GEM vehicle parked at the intersection
corners.

Figure 8: An illustration of
distLast which is defined as
the distance between the end
point of ground truth and
predictied trajectory

predicted	
path	

observed	
path

actual
path

distLast

models to uncertainty in curbside geometry. Furthermore,
interaction among pedestrians is not considered in the presented
TASNSC framework and will be part of future work. Lastly,
incorporating the speed profile of pedestrians would help further
improve prediction performance, and will again be part of future
work.
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