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Human Trajectory Prediction Using Similarity-Based
Multi-Model Fusion

Golnaz Habibi

Abstract—Understanding pedestrian behaviors is crucial for
a safe navigation of self-driving vehicles. However, pedestrians
exhibit a large variety in their motion behaviors that are af-
fected by interaction with the environment and other users of the
road/sidewalk. Most of current models are limited to batch (offline)
settings which requires to learn from the entire datasets. This
letter presents a similarity-based model fusion algorithm, called
SimFuse, for improving the prediction accuracy which enables
autonomous agents to incrementally update their knowledge by
communicating with other vehicles (V2V) by infrastructures (V2I).
In the proposed framework, knowledge is shared in a compact form
of “learned model” instead of raw data which provides a scalable
sharing paradigm between agents. This work extends our prior
work SILA [1] by providing multi model fusion of n > 2 models
at the same time. We evaluate our algorithm in both intersection
and non intersection scenarios and compare it with other baselines.
The results show our algorithm outperforms state of the art in
terms of Average Displacement Error at intersection scenarios
and it has comparable result for non intersection scenarios with
3% improvement over SILA in ADE. The results also show that
SimFuse updating time is up to 12 times faster than SILA with
similar performance.

Index Terms—Distributed Robot Systems, Human and
Humanoid Motion Analysis and Synthesis, Computer Vision
for Transportation.

1. INTRODUCTION

ITH advances in Connected Vehicle (CV) technologies,
W autonomous vehicles get access to more information,
have better understanding of the environment, and therefore
act more safely and effectively. For instance, the data collected
from a fleet of vehicles helps the autonomous driver understand
the traffic flow and congestion, hazardous location, or learn
different motion behavior which leads to higher safety and
mobility in intelligent transportation system. Despite leverag-
ing V2V communication for tracking task [2] or distributed
planning [3] in intelligent transportation system, there is no
work known that has ever used shared information for updating
the learned models and eventually improve prediction accuracy.
Since most of the learning model of motion behaviors are limited
to batch setting, they cannot be updated incrementally when
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more data/information is available from on board sensors/other
agents.

Previously, we have presented SILA [1] with the ability of
incremental learning of pedestrian motion behavior. However,
it was limited to fuse only two models at a time. This limits
the possibility for V2X application, where an agent — either an
autonomous vehicle (V2V) or an infrastructure (V2I) — wants to
update its knowledge by the fusion of multiple models shared
at the same time. This letter extends SILA and proposes a
Similarity-based Multi-Model Fusion (SimFuse) algorithm such
that each agent is able to incrementally update its knowledge by
communicating with other agents and fuses multiple models. In
SimFuse framework, the human motion model is presented in
terms of motion primitives and their transitions (see Section III).
To fuse multiple models, their motion primitives are compared
and similarly (matching) graphis created. Then edges with lower
similarity are successively relaxed until a consistency between
matched motion primitives is achieved. To update the model,
matched nodes and their transitions in the consistent graph are
finally fused.

List of Contributions: (1) anew consistency algorithm suitable
for matching motion primitives is proposed; (2) a new scalable
Gaussian Process (GP) fusion algorithm based on sparse GP is
proposed, which can be applied to any problem that requires
fusion of multiple GPs; (3) Conducted several experiments
including intersection scenarios and non intersection scenarios
to evaluate SimFuse. The results confirm SimFuse outperforms
the state-of-the-art algorithm in terms of average displacement
error (ADE) with 30% improvement in intersection scenarios,
and it achieves a comparable performance for non-intersection
scenarios with the best ADE in average by 3% improvement over
SILA. (4) SimFuse can update the knowledge by fusing multiple
models much faster than SILA. The results show SimFuse
updating rate is up to 12 times faster than SILA for the fusion
of up to n = 35 models, while both achieve similar prediction
accuracy.

II. RELATED WORK

Pedestrian Motion Prediction: prediction of the pedestrian
motion has been studied widely in robotics and autonomous
driving communities [6]. Most recent work incorporate inter-
action between the pedestrians in their model to improve the
accuracy [7]-[10]. However, they are typically based on batch
learning, which requires each vehicle access to the entire dataset
and process all the data at a time. This assumption may not
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be feasible for vehicles with limited capacity and it limits the
agent to use pre-trained model, without flexibility to update the
model when the new data/information is available. Previously,
we presented SILA [1], where each agent can incrementally
update its model when more information is available from its
own experience. However, SILA is limited to incrementally learn
from one set of datasets. This letter presents SimFuse which
provides an additional property for a group of agents where they
can fuse any number of models.

Distributed Machine learning and V2V communication: al-
though distributed learning approaches has been studied pre-
viously [11], most of the prior work in autonomous driving are
either limited to multi-agent reinforcement learning [12]-[14] or
solve different problems other than prediction of human/vehicle
trajectories. For instance, Shorinwa et al. [2] proposed an algo-
rithm for tracking of multiple vehicles by a fleet of autonomous
vehicles. Their work focused on solving multi-tracking prob-
lem, for short-term prediction when the target car is partially
observable by each tracker vehicle. This letter instead, focuses
on improving the prediction model of pedestrian trajectory in
each agent by fusion of models it receives from other agent.
The vehicle-to-vehicle (V2V) communication has also been
considered in prior work [15], [16], which shows advantages
in different aspects of traffic surveillance and management,
route optimization, prevention of collision, sharing hazards and
accidents [17]. The work in [18] addresses collaborative percep-
tion in autonomous vehicles, where the sensor measurements
are shared between vehicles to increase the automated driving
systems confidence in detecting objects using a 3D sensor fusion
algorithm. FusionEye [19] provided a connected vehicle system
that enables vehicles to share their data, which is then merged
into a more complete traffic scene. We previously presented
SILA [1] as an incremental learning framework where an agent
incrementally updates its pre-trained model when and where
a new batch of data is available. SILA can be used as an
efficient and scalable framework for multi-agent setting. In this
framework, vehicles share their knowledge in the abstract form
of “learned motion behaviors” instead of raw data. However,
SILA was limited to fuse only two models. This letter presents
SimFuse which is able to fuse any number of models. Addition-
ally, the proposed framework provides a real-time distributed
learning process which is scalable to the large number of agents.
Recently, Kucner et al. [20] presented a framework where a large
map of motion patterns is stored in one model. In our approach,
we do not store all the motion patterns. Instead, we leverage
the similarity between motion primitives and fuse the similar
motion patterns. The benefit of fusion of motion primitives over
storing all motion primitives is the ability to continually improve
the knowledge in a scalable format without need for learning
from the entire dataset, while the model complexity maintains
reasonably small.

III. BACKGROUND AND PROBLEM STATEMENT

Assume there are n Agents, denotedby A%, i = 1, ..., n.Each
agent gets access or collects a mini-batch of k; training trajecto-
ries, represented in grid with P x @ blocks and width of w each.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

viz :; A A ¢

t2f ST mi 4 A
aiz v)i/z ik el al
Annor e ld=
Tttt mé v v

(a) grid cells (b) motion primitives

(c) trajectory segments w/
transitions

(d) dual graph

Fig. 1. (a) Trajectories are discretized in grid world. Note that the activation
cells are expanded when the trajectory is close to the cell boundaries. (b) The
model is trained as a set of motion primitives and their transitions learned by
ASNSC-based algorithms [4], [5]. (c) Illustration of trajectories clustered in
model M?, each cluster is represented by motion primitives shown in (b), with the
same color. The observed transitions between trajectory segments are considered
as r}g. (d) The dual graph includes all non-zero transitions i.e., r}g #0.

Each trajectory t** € R3P9, 2 =1,... ki, and i = 1,...,n
has three components of: x-y velocities (vi* € RP? vy % €
RP Q), and activeness variable denoted by a'z e RPQ.If =
goes into a cell pq, al? = 1, otherwise a’? = 0 (see Fig. 1(a),
the shaded cells have nonzero values). Using this terminology,
the matrix of data X}, j: is built from k! trajectories, i.e.,
each column is a trajectory vector.

A. Learning Motion Primitives

Given a dataset X, a set of K, motion primitives denoted by
D), are learned using a sparse coding method [4]. This dictio-
nary learning method is a multi-variable optimization problem
which tries to present the data with minimum number of motion
primitives while the residual error is minimized simultaneously.
The output is a set of K, motion primitives in form of matrix
D@, each column is a motion primitive vector, denoted by
mi € R3Q k=1,...,K}. Fig. 1(b) shows an example of
motion primitives learned from the trajectory data. Note that
motion primitives can overlap each other. Similar to trajecto-
ries, motion primitives are represented in grid, but they usually
have sparse non-zero values, as each motion primitive usually
represents a part of the trajectory. More precisely, trajectories are
segmented into clusters, each cluster is presented by a motion
primitive (see Fig. 1(c)). As illustrated, A trajectory typically
consists of more than one segment (motion primitive), such
that a pedestrian transits from one primitive to another motion

primitive in a walking scenario. To model the transition between
)

motion primitives, we define R(Zi S called transition matrix,
d d

KixK {’j )
transitions from motion primitive m’ to my observed in the

training data. Note that this matrix is asymmetric in general.

such that each entity r? ;s €ER specifies the number of
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To represent motion primitives and their transitions, we use
motion primitive dual graph, where the nodes are motion prim-
itives and the edges are the transition between two motion
primitives. This graph is a weighted directed graph, where the
weights are the values of R? entities corresponding to that in-
dices. Each transition r} gin R/ are modeled by two independent
Gaussian Processes (GPs): Gijc " GPy;} o+ These GPs are used
to learn the velocity components as a function of (x,y) so that
v, = GPx} (x,y) and v; = G Py} (x,y) where the trajectory
indices are omitted for brevity.

B. Problem Statement

Given a set of agents A® i =1,... n and their learned
models M) = {D® R®} i=1,... n. These agents can
share their knowledge via V2X communication, i.e., Vehicle-
to-Vehicle V2V or Vehicle-to-Infrastructure (V2I) [21]. The
goal is to design a fusion algorithm such that each (ego) agent
A’ compares its model M () with models received from other
agents, A'U) j =1,... N, and then update its model by fusion
of the received models M'(7). We previously presented SILA
for fusion of two models when a single agent incrementally
updates its model, which means only two models are fused.
In multi-agent setting when multiple models from neighboring
agents are available, i.e., N P> 9 pairwise fusion may not be
efficient as it requires iteratively fusion of the models until all
the models are fused. This work extends the model fusion to any
number of N’ > 2 models to improve both the accuracy and
scalability.

IV. APPROACH

Let model in agent A’ at time ¢ be denoted by M () (¢) which
compromises motion primitive vectors D) (¢) and transition
matrix R()(t), and assume N’(t) models are shared with
A', denoted by M(t) = {M'0)(D'Y) (1), R'O) ()} 1. we
propose a Similarity-based multi-model Fusion approach (Sim-
Fuse) to update the model M*(t) at time ¢ by fusing the models
in {M'U)(t)}. SimFuse has three main steps: (1) Pairwise
similarity scores between all motion primitives in D) with

those in D’ = {D’ (j)}?f:igt) are computed; (2) The matching

|
|
|
|
A e A »

e 4 == .A Fuse matched !
o "Z D nodes and !
= ) - update the 1
S Relaxing | + e |

. - model
. . edges e |
Inconsistent Consistent - . !
Matching Graph  matching graph Multi-Model fusion |
|

Agent A'

Block diagram of updating model in SimFuse with the capability of multi-model fusion.

graph G, for the similarity larger than a given threshold is created
and make G4 consistent using edge relaxation; (3) Matched
motion primitives and their corresponding transitions are fused
and the non-matched motion primitives and transitions are
added to model. Model is updated to M*(¢ + 1). (See Fig. 2 for
the block diagram and Algorithm 1 for the pseudo code). Note
that SILA has similar steps. However, the main contribution
of this work is step 2 and 3. In step 2, the new relaxing edges
algorithm is proposed to make the graph consistent. In step 3, we
propose a new scalable algorithm for the fusion of multiple GPs.

A. Step 1: Computing Pairwise Similarity Score

Inspired by the concept of coherence of dictionary atoms [22],
[23] and similar to [1], the pairwise similarity between two
motion primitive vectors mgf) eD® and m! € D'Y) are
computed as the normalized inner product of them, known as
cosine similarity:

. . <m§j), m’(j)>
Sty i) = 55— m
‘mf |[mg™|

where, (-, -) is the inner product, mgf) and m/g(j ) denote the f-th

motion primitive in model M (") and the g-th motion primitive
in model M'(9) respectively. Recall each motion primitive is
defined in P x @ cells with two components of (v}, vf), k €
P x Q. Cosine similarity is the average of cosine of the angles
between motion primitive vectors in each grid cell. If a motion
primitive is not present in a cell where another primitive presents,
their similarity is zero in that cell. Thus, we can measure the
similarity between motion primitives both in terms of the shape,
i.e., cosine angle in common cells, and their locations, i.e., the
number of cells they overlap.

B. Step 2: Matching Graph and Edge Relaxation Algorithm

Pairs of motion primitives m}i) and m'g(j )

score S (m?), m;(j )) greater than a predefined similarity
threshold, 3, are considered as matched motion primitives. The
matched motion primitives build a matching graph G, where

the edges represent the pairwise matching between motion

with similarity
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Fig. 3. (a) An example showing an inconsistent matching: e.g., each motion
primitive from M? is matched with two primitives from M’(1)(b) Matching
graph which is inconsistent initially. Not matched motion primitives are shown
by dashed circles. The nodes on the left side are from model M () and right
nodes are from M'( ), j=1,...,3. Edges with least similarity, marked by
red crosses, are being relaxed (removed) to achieve a consistent graph. (c) The
consistent graph after the red edges are relaxed, the motion primitives in each
component (green-shaded) are fused (figures are seen better in colors).

primitive in model M) and motion primitives in models in
M'. Note this graph does not consider the matching between
motion primitives within models M. Also, Gs by definition
does not include unmatched nodes which implies that the
unmatched nodes are not going to be fused (see Fig. 3(b), nodes
with dashed circle). Fig. 3 shows an example of matching
graph when motion primitives in M () are matched with motion
primitives from three models in M’. This figure shows G
consists a set of disjoint connected components (i.e., matched
components): {{C1},{Cs},...,{Cn.}}, which are formed
from the matching nodes, and suggests the fusion sets, i.e., the
nodes in each component {C,} are fused. However, we will
show these components should meet the consistency first.

Definition 4.1 (Consistency): C, is consistent if for every
matching edge e(uy,l,) € C, following properties hold:

@) ﬂufejw(q,)PTn(Uf) =0, (ii) ngMr(j)PTn(lg) = 0.

Function Prn(uy) is the origin (parent) models the motion
primitive u comes from. This definition implies the one-to-one
matching between nodes from M (") and M) as a necessary
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Fig. 4. (a) Fusion of motion primitives from three models (green, red, blue),
the final fused primitive is shown in black. (b) Prediction distribution with three
branches and their likelihood (figures are seen better in colors).

condition for achieving consistency in C,. That means, there is
only one and only one edge between any motion primitive uy in
M and a motion primitive lyin M’ () in a consistent graph.

Conjecture 1: To fuse similar motion primitives between
M) and M| each matched set should be consistent.

Fig. 3(a) shows an example of inconsistent matching. In
this case it is not clear which sets of motion primitives have
to be fused. Consistency in matching graph has been studied
for a while. However, in those approaches there exists a real
“true label” [24] for matched nodes, that is, there is an optimal
solution which achieves “correct” matching. In motion primitive
application, however, there is not such a ground truth to optimize
the matching. Instead, the matched nodes with highest similarity
is suggested to be fused. We propose a relaxing edges algorithm
in which edges with the least similarity scores are successively
relaxed (removed) until only one edge remains between match-
ing nodes from u; € M@ and I, € M'U) Fig. 3 shows an
example of relaxing the edges using the proposed method.

C. Step 3.1: Fusion of Motion Primitives

Given a consistent G4 with N, matched components, the
fusion step consists of fusing matched nodes, and fusing the tran-
sitions (modeled as GPs) in each matching component { C,, } éV:C 1
Let mm, = {m,, € ]R{3PQ}LC:°|1 be motion primitives in C,,
and the size of motion primitives in Co is |C,|. N,;, = 2PQ isthe
first 2P() dimension of each motion primitive vector (i.e., their
(xy) velocity components). To effectively fuse motion primi-
tives, we simply compute the element-wise average between the
all vectors in mm,, denoted by fuse(mm,):

ICol

fuse(mmy,y) = !

== _ Mw 2
‘Co|w:1 ’

Where, myy is the k-th dimension of m, € mm,, k =
1,...,2PQ (see Fig. 4(a)). The last PQ-th dimension of the
fused primitive (i.e., the activeness variable and k¥’ = 2PQ +
1,...,3PQ) is computed as follows:

|Col
fuse(mmok’) = U Mk (3)
w=1
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D. Step 3.2: Fusion of Transitions (GPs)

GP regression algorithms are powerful non-parametric ap-
proaches for predicting the functions with uncertainty. However,
they usually do not scale well to large dataset [25]. One approach
to improve GP scalability is to approximate them by a small set
of inducing inputs. For example [26] introduced pseudo inputs,
which reduces the complexity from O(N3) to O(N?N,), where
N, is the number of data point and Ny is the number of inducing
inputs, and N; < Ny. In this letter, we propose a scalable
framework for the fusion of multiple GPs. The approach taken
here combines these two ideas to fuse Nz GPs. We assume each
GP;7 g=1,..., Ng is represented by a set of pseudo inputs
with size of n?. We build a new dataset, called induced data
d.,., by augmenting pseudo inputs from each GPs, assuming
the pseudo inputs are sufficiently representative of the original
dataset. We also assume n§ = Ny,g = 1,..., Ng. Using this
approximation, the size of data is reduced to |d;,,,| = NgN7.
Without this approximation, the original dataset size is |dyyig| =
Zévfl |d. |, where |dZ, | is the size of data points associated
with g-th GP. Since N; < |dZ, |, our new approach significantly
reduces the size of the dataset and it is scalable for large Ng.

Using this new dataset, we apply the method in [26] to learn
sparse GPs in the form of pseudo inputs I’ along with the hyper-
parameters H'. The proposed GP fusion method is summarized
in Algorithm 2 (see [26] for more details of learning pseudo
inputs). The advantage of this approach is to provide a scalable
framework for fusion of GPs. Recall, each transition in a model is
modeled by two GPs: (G Pz, GPy). To fuse a set of transitions,
their corresponding GPs are fused using the proposed method
explained above.

E. Prediction Phase

Updated model comprises of updated motion primitives and
transitions. When a new trajectory is observed in the test envi-
ronment, the closest motion primitive to the observed trajectory
is selected as “current primitive”. Transition matrix R’ and its
G Ps component are used to estimate next motion primitives
branched from the current primitive and its associated likelihood
respectively. Fig. 4(b) shows an example of prediction of a
future trajectory. The estimation is a set of branches with its
associated likelihood. This prediction procedure is common in
all ASNSC-based algorithms [4] discussed in the Section V. For
evaluation, the trajectories are sampled from the distribution of
the prediction which will be explained in Section V.

V. RESULT
A. Evaluation Scenarios and Experiment Setup

Two sets of scenarios are considered for evaluation of Sim-
Fuse and baselines: intersection and non-intersection scenarios.
In both scenarios trajectories are sampled with the frequency of
2.5 Hz. Although our algorithm is able to be trained and tested
on trajectories with any length, we select only trajectories with
the length at no shorter than length of 6 secs (20 frames) to have a
fair comparison with other baselines. For testing, each trajectory
is observed for 3.2 sec (8 frames) and is predicted for 4.8 sec

Algorithm 1: SimFuse Algorithm.

1 Input: M¥(t), M(t) = {M/(D'Y), R'D)} (Y
2 Output: M (t + 1){D®(t 4+ 1), RO (¢t + 1)}

3 while Updating is True do

4 Gs = MatchingGraph(M*(t), M’)

s | DO+ 1) =0,RO(t+1)=0

6 Gs = RelaxEdges(Gy)
7
8
9

C = Matchingcomponent(Gs)// € ={Co.}!"),
DO (t + 1).append(m ¢ G)

RO(t 4 1).append(r ¢ G)

// add not-matched motion primitives

10 for o=1:|C| do

it} Dy < fuse(Vmm, € C,)
12 DO(t + 1).append(Dy)
13 Ry + fuse(Vr, € C,)
14 RO (t +1).append(Ry)

15 | return MWD (¢t +1): (DOt +1),RO(t + 1))

Algorithm 2: GP Fusion Algorithm: fuseGP({GPq};Vfl)

1 Input: set of GPs{GP,(I,, Hq)}évfl

// I;: GP pseudo input vector

// Hg: GP hyperparameters
2 Output: GP'(I',H')
3 Iind = @
4 for g in GF, do
5 L[m,d.append(lg)
6 GP'(I',H'") = SparseGP(I;nq) [26]
7 return G P’

(12 frames). We adopt the common “leave one out” method,
where one scene from N, scenes is considered as test scene and
the model is trained on remaining N, — 1 scenes. For distributed
learning approaches (including SimFuse, SILA, SimFuse-Naive
baselines), Ny — 1 agents are trained in a particular assignment
(e.g. agent 1 is trained from scene 1, agent 2 is learned from scene
2, and so on). The final fused model is tested on the remaining
scene.

B. Evaluation Metrics

1) Average Displacement Error (ADE) [10]: defined as the
average Euclidean distance (L2 norm) between the predicted
and ground truth trajectory over a fixed time horizon 7"

1 tobs+T ) )
ADE == 3 |[Pprea = Pjll, )

i=topst1

where p! _, and p; are points at time ¢ in the predicted and
ground truth trajectories respectively. t,ps is the time corre-
sponding to the last observed point, before prediction starts.
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TABLE I
COMPARISON OF PERFORMANCE (ADE/FDE) FOR NON INTERSECTION SCENARIOS, LOWER IS BETTER

Algorithm/dataset [ ETH [ Hotel [ Univ [ Zaral [ Zara2 | Average
Linear (constant velocity) 0.92/2.20 0.37/0.84 0.62/1.44 0.45/1.04 0.58/1.33 0.53/1.24
SGAN-20VP [9](batcfagoh) 0.77/1.40 0.43/0.87 0.75/1.50 0.35/0.70 0.36/0.72 0.51/1.02
STGAT [27](batch) 0.65/1.12 0.35/0.66 0.54/1.10 0.52/0.69 0.34/0.60 0.43/0.83
CGNS [28](batch) 0.62/1.40 0.70/0.93 0.48/1.22 0.32/0.59 0.35/0.71 0.49/0.97
STSGN [29](batch) 0.75/1.63 | 0.63/1.01 0.48/1.08 | 0.30/0.65 | 0.26/0.57 | 0.48/0.99
GAT [30](batch) 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07
Social-STGCNN [7](batch) 0.63/1.08 0.49/0.86 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.74
TASNSC [5](batch) 0.78/1.40 0.42/0.90 0.61/1.34 0.50/1.05 0.52/1.14 0.56/1.16
SimFuse-naive 0.77/1.83 0.30/0.64 0.60/1.31 0.38/0.84 0.43/0.90 0.49/1.10
SILA 0.59/1.19 0.31/0.73 0.51/1.15 0.27/0.55 0.29/0.58 0.39/0.84
SimFuse (ours) 0.59/1.18 0.31/0.73 0.50/1.17 0.27/0.54 0.27/0.56 0.38/0.84

2) Final Displacement Error (FDE): defined as the Euclidean
distance between predicted and ground truth trajectories at hori-
zon time 1" [9]:

tobs +T
pp'red

FDE — ] (5)

_ ptobs+T
Py Hz '

C. Baselines

Three groups of baselines are considered for the evaluation:
1) Linear model or constant velocity model (in red, Table I)
2) Interaction-aware approaches [7], [9], [27]-[30] (in blue,
Table I), all of them are batch learning (when the model
is learned from entire dataset) and they incorporate the
interaction between pedestrian in prediction model.
Non-interaction aware, but context aware approaches (in
magenta, Table I), which are the variations of ASNSC, in-
cluding batch setting of SimFuse (TASNSC) [5]; SimFuse
which fuses Ny — 1 models in each time step; Modified
SILA by considering the consistency in matching graph,
referred as SILA in all comparisons; SimFuse-naive base-
line, where models are added without any fusion.

As discussed in Section IV, ASNSC-based baselines includ-
ing SimFuse, output a distribution of future trajectories. To have
a fair comparison with other baselines [7], i = 20 trajectories
are sampled and the one with minimum ADE is selected for the
evaluation.

3)

D. Experiment 1: Non-Intersection Scenarios

Five publicly available datasets of ETH, HOTEL, UNIYV,
ZARA1, and ZARA?2 have been used [10], [31]. Table I sum-
marizes the results, where each column corresponds to each
testing scene. The results confirm SimFuse generally has a
comparable performance with other baselines in terms of ADE,
but it achieves the best performance in terms of ADE in aver-
age, showing that SimFuse generalizes to unseen scenes better
than other algorithms. Model fusion in SimFuse helps remov-
ing redundancy in learned motion behaviors and thus avoids
over-fitting. Since SimFuse does not consider the interaction
between the pedestrians, its FDE as a measure of long-term
prediction is not as good as interaction-aware baselines. Inter-
estingly, SimFuse outperforms its batch setting (TASNSC) in
all scenes. In TASNSC, the predicted trajectories are computed
as the result of a non-linear optimization problem (for learning
the motion primitives) and non-parametric Gaussian regression
(for modeling the transitions). This such non-linearity leads to
get a sub optimal solution, which means the batch setting in

TASNSC does not necessarily lead to a better performance. On
the other hand, the fusion of sub-optimal results in SimFuse
may lead to updated model with better performance. Moreover,
TASNSC loses a level of accuracy as it compromises the pre-
diction accuracy to optimize the number of motion primitives.
As a result, learning from a small dataset in non-batch setting
(i.e., SimFuse, SimFuse-Naive and SILLA) could achieve a better
accuracy, leading to higher performance, but in the cost of
increasing the model size.

E. Experiment 2: Intersection Scenarios

We have collected pedestrian trajectories in four different
intersections in Boston/Cambridge streets shown on top of the
Table II denoted by A,C, D, E. data related to A, F were
collected by a Polaris GEM vehicle equipped with three Logitech
C920 cameras and a SICK LMS151 LIDAR [32]. For collecting
data at intersections C, D, we have used a 3D LiDAR sensor
(Velodyne VLP-16) which was mounted on a tripod. Intersection
B is located at MCity, Michigan. This data was collected by
tracking pedestrians when they were wearing RTK GPS hats.
These five intersection dataset contain 1024 trajectories in total.
In this experiment, the data is normalized respect to the inter-
section corner geometry similar to TASNSC [5]. We compare
our algorithm with other ASNSC-based algorithms, as well
as Social-STGCNN [7] which is known as the State-of-the-art
among the interaction-aware baselines. We follow leave-one-out
setting in the previous experiments. The results show ASNSC
based algorithms (magenta) outperform Social-STGCNN in
all-except-one scenarios. This result confirms that incorporating
environment context (i.e., distance to the curbside) significantly
improves the prediction in intersection scenarios, such that all
TASNSC-based algorithm outperform Social-STGCNN which
does not consider the environment context. The results show
SimFuse performs the best in this experiment.

F. Experiment 3: Updating Time Analysis

In this section we analyze the updating time in SimFuse and
then show how it is supported in an experiment. Assume the
matching graph of N?+ 1 models has N. components. The
fusion time is governed by the number of the edges/nodes to
be fused in each time step, which is | Ejp¢qi| = (N¢ + 1) N, for
SimFuse in the worst case scenario, when all models are similar
to each other. In SILA this number is reduced to 2N since only
two models are fused. However, the pairwise fusion repeats for
N times and the total edges to be fused is | Eyotar| = 2 N'N.,.
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TABLE II
PERFORMANCE COMPARISON IN THE FORMAT OF (ADE/FDE) AT FIVE INTERSECTION SCENARIOS, LOWER IS BETTER

Algorith‘m/Dataset Average

Social-STGCNN (batch) 0.96/1.62 | 1.63/2.71 | 0.87/1.36 | 1.39/2.24 | 1.57/2.95 | 1.27/2.17

TASNSC (batch) 0.68/1.38 | 0.78/1.63 | 1.00/2.13 | 1.00/2.18 | 0.96/2.02 | 0.88/1.86

SimFuse-naive (no fusion) | 0.68/1.37 | 0.97/2.05 | 0.78/1.63 | 1.15/2.40 | 0.90/1.79 | 0.90/1.85

SILA [1] 0.70/1.39 | 0.86/1.80 | 0.86/1.82 | 1.05/2.31 | 0.99/2.07 | 0.89/1.87

SimFuse 0.67/1.37 | 0.96/2.04 | 0.77/1.64 | 1.15/2.41 | 0.88/1.76 | 0.88/1.84
TABLE III

COMPARISON OF ASNSC-BASED ALGORITHMS’ PERFORMANCE. DATA WAS COLLECTED AT INTERSECTION A AND EVENLY DISTRIBUTED ACROSS 35 AGENTS.
ALL AGENTS LEARN FROM THE DISTRIBUTED DATA INDIVIDUALLY, ONE AGENT IS RANDOMLY PICKED AS EGO AGENT WHICH FUSES THE LEARNED MODELS
FROM THE OTHER AGENTS AND UPDATES ITS MODEL. THE EGO AGENT’S PREDICTION ERROR WAS INITIALLY (ADE/FDE : 1.14/2.36). NOTE THAT IN
TASNSC (BATCH SETTING), THE AGENT LEARNS FROM THE ENTIRE DATA. THE LOWER IS BETTER FOR ALL METRICS

Algorithm 1-step fusion time (s) total fusion time (s)

number of fused edges in 1-step fusion

ADE/FDE model size (motion primitives/transitions)

SILA 0.001 0.045

24 0.93/2.02 103/176

SimFuse 0.0033 0.0033

82 0.91/1.98 68/99

SimFuse-Naive NA NA

NA 0.83/1.81 473/609

TASNSC NA NA

NA 0.89/1.88 36/120

In practice, the number of nodes in each matched component
is much smaller than N? and and SILA typically requires more
time compared to SimFuse for the fusion of N? 4 1 models.
To show this, we have conducted an experiment in which 848
trajectories collected in intersection A, and data are partitioned
into 35 small batches, which are fed into 35 agents, implying
each agent learns from 29 trajectories. Table III compares the
updating time between SILA and SimFuse in each time step
in average and total time required for an agent to update its
model with 34 other agents model. We also compute the average
number edges to be fused in each fusion step. The results confirm
the updating time in each time step is almost proportional to the
number of fused edges. e.g., in this example the ratio of number
of matched edges in SimFuse to SILA is close to the ratio of
their fusion time in each time step (=3.41 vs. ~3.33), which
confirms the correctness of the analysis. Note that SILA has to
run the fusion step for all models which requires significantly
longer time to reach the final updated model in total. To compare
the performance, the final updated model from each algorithm is
used to predict the trajectory set at intersection C, 167 trajecto-
ries in total. This results shows the agent improves its initial pre-
diction up to 20%, when it fuses its model with other 34 agents.
Although SimFuse-Naive achieves the best performance in this
experiment, its model-size is growing so fast due to no fusion.

G. Experiment 4: Distributed Learning of Motion Primitives

In ad-hoc communications scenarios, the assumption of fully
connectivity may violate. The agents share their knowledge via
pairwise communication (communicating with one neighbor at
a time) which limits to number of model fusion to two. This is
essentially similar to SILA approach, with slight modification
in relaxing edges, and the extension of SILA to perform as
a distributed solution in ad-hoc communication environments.
Fig. 5(a) shows an experiment, where five agents A — F, each
exploring the intersections A — E respectively, but their com-
munications are constrained by a connectivity graph shown in

1 2 3 4 5 6 7 8
Communication Round

Fig.5. (a) A network of five agents (red stars) with ids: A — E, which initially
explored an intersections A — E' (Table II) with the same order (e.g., agent A
explores intersection A). (b) The trend of prediction error at new intersection
corner (F), as each agent incrementally updates its model by communicating
with its neighbors via pair-wise communication, resulting a consensus after
eight rounds of communication.

Fig. 5(b). The evaluation scene is intersection F'. We assume
when an agent communicates with one of its neighbors, both
agents updates their model simultaneously and reaching consen-
sus. In this example all agents converges to a same prediction
accuracy after 8 rounds of communication.

H. Effect of Similarity Threshold

We study the effect of similarity threshold in SimFuse on
prediction error (ADE) and model size, defined as the number
of motion primitives and transitions. As the similarity threshold
increases, the number of matched motion primitives between
models decreases leading to less number of fusion and increasing
the final model size. On the other hand, decreasing threshold
increases the fusion, causing more fusion, which may create
a model with higher prediction error. Fig. 6 shows model size
versus prediction error (ADE) in an intersection scenario exper-
iment described in Experiment 3, when similarity threshold /3
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Fig.6. Selecting similarity threshold for intersection A experiment. Threshold
beta(B) = 0.7 gives the best trade-off between the accuracy and error.

varies from 8 = 0.5 to § = 1 (i.e., almost no fusion). SimFuse
with 8 = 0.7 gets the best trade-off between model size and
error.

VI. CONCLUSION

We have proposed a multi-model fusion framework for a set
of agents that enables them to update their prediction models
by communicating with other agents and fuse their own model
with models shared by multiple other agents. The results confirm
SimFuse outperforms state of the art in terms of prediction error
in intersection scenarios for pedestrian trajectory prediction,
while the model size remains sufficiently small compared to
Naive approach. SimFuse is not limited to learn human tra-
jectories, it can also be used for understanding other motion
behaviors such as cyclists and cars, which is left for the future
work. Another future study would be to combine SimFuse with
SILA such that each agent updates its model by incrementally
explore the environments and learning from the data when
arrived.
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