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Abstract

The prediction of pedestrian motion is challenging, es-

pecially in crowded roads and intersections. Most of the

current approaches apply offline methods to learn motion

behaviors, but as a result, they are not able to learn con-

tinuously and typically do not generalize well to new en-

vironments. This paper presents Similarity-based Incre-

mental Learning Algorithm (SILA) for pedestrian motion

prediction with the ability of improving the learned model

over the time as data is obtained incrementally. To keep

the model size efficient, the motion primitives learned from

the new data are compared with the previously known ones,

and similar motion primitives are fused while novel motion

primitives are added to the model. Results show that the

SILA model growth rate is about 1/3 that of an incremen-

tal approach that does not fuse motion primitives. SILA is

evaluated on different datasets and scenarios including in-

tersections and busy streets. The results show that, even

though SILA learns incrementally, it performs comparably

to (and sometimes outperforms) state-of-the-art algorithms

in pedestrian prediction. Additionally, SILA learning time

only depends on the size of the data added incrementally,

which makes SILA more efficient in terms of time and space

compared to batch learning.

1. Introduction

Safe navigation of autonomous vehicles in urban envi-

ronments requires accurately predicting motions of other

moving agents, including cars, cyclists and pedestrians.

Pedestrian motion prediction is challenging as compared to

other agents, as the rules are less clear and more frequently

violated. Moreover, pedestrian behavior is also complicated

by their interactions with other road users.

Machine learning techniques have been used to model

complex pedestrian motion behavior by incorporating con-

textual features [1–3] and/or the interaction between other

road users [4–8]. However, most of these techniques

are limited to offline (batch) setting. The offline setting

becomes impractical when training data is incrementally

available or when the autonomous agent has to explore new

environments. Batch learning does not have the option of

learning incrementally and hence, limits the generalization

of the pre-trained model to new pedestrian behaviours and

environments. Moreover, incremental learning provides the

flexibility of learning new behaviors using relatively fewer

data points as opposed to learning from scratch. Such a

setup is significantly more efficient and better suited to au-

tonomous driving applications where there is a need for

real-time learning. The need to maintain pedestrian privacy

might further limits the possibility of storing past data and

re-learning from the past and new data combined (batch

learning). Instead, if an agent can learn incrementally, its

prediction model can be improved continually from new

streams of data or “few-shot” examples without the need to

access past data. Additionally, incremental learning enables

systems with limited resources to process big data gradually

in scenarios where offline learning is impractical. Although

there has been a lot of work in incremental learning in dif-

ferent domains [9–11], there are very few prior works on

incremental learning of pedestrian behaviors.

This paper presents a Similarity-based Incremental

Learning Algorithm (SILA) for incremental learning of mo-

tion primitives for pedestrian motion prediction. To the

best of our knowledge, the only prior work on incremen-

tal learning for pedestrian motion prediction is presented by

Vasquez et al. [12] and is based on Growing Hidden Markov

Models (GHMMs). Similar to other Markovian approaches,

GHMMs depend on goal estimation for inferring pedestrian

intent which requires complete un-occluded trajectories for

training. However collecting such datasets is impractical in

busy and crowded domains such as intersections, campus

areas and shopping centers, where often a part of the pedes-

trian trajectory is occluded by obstacles and other agents.

In another work, Chen et al. [13] combined the merits of

Markovian-based and clustering-based methods for the task

of pedestrian trajectory prediction. In their approach, trajec-

tories are segmented based on motion primitives learned us-
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ing a sparse coding algorithm. The transitions between tra-

jectory segments are then modeled by Gaussian Processes

(GPs). Their approach does not require estimating the goal

as opposed to [12] and can learn from partial trajecto-

ries. Inspired by this work, the trajectory prediction frame-

work of SILA follows [13] and comprises of motion prim-

itives and pair-wise transitions between them. The motion

primitives are learned using Augmented Semi Non-negative

Sparse Coding (ASNSC) [13] and the pair-wise transitions

between motion primitives are modeled using sparse GPs

based on “pseudo inputs” [14]. We leverage the idea of a

“curbside/common frame” as introduced in [15] to build a

transferable model by mapping trajectory data into a nor-

malized and environment independent common frame.

In SILA, whenever new data becomes available, motion

primitives and their transitions are learned from the new

batch of data only. To update the pre-trained model, we pro-

pose a similarity measure for comparing the newly learned

motion primitives with those in the pre-trained model. Sim-

ilar motion primitives and transitions are fused based on a

similarity graph constructed using the proposed similarity

measure.

To summarize, the main contributions of this work are:

(i) A novel incremental learning algorithm - SILA - for

pedestrian motion prediction, with the ability of updating

the prediction model incrementally while simultaneously

transferring knowledge across different environments; (ii)

SILA proposes a new method for fusion of motion prim-

itives based on the similarity graph; (iii) SILA, on an av-

erage, outperforms prior works (including batch learning

methods) in terms of prediction error (Average Displace-

ment Error: ADE [16]) with 5% improvement; (iv) SILA

achieves up to 1/3 smaller model growth rate (in terms of

number of motion primitives and transitions) as compared

to a naive incremental learning baseline (in which new mo-

tion primitives are simply added without any fusion); (v)

Possibility of real-time learning because of fast model adap-

tation to newly available dataset: SILA’s training time only

depends on the size of the mini batch it learns from incre-

mentally, as a result, it can learn up to 20 times faster than

batch learning algorithms.

2. Related Work

Related prior works mainly fall under the domains of

pedestrian motion prediction and incremental learning of

motion behaviors.

Pedestrian motion prediction Mohamed et al. [5] present

the most recent work in pedestrian motion prediction. Their

approach models pedestrian interaction with an attention

graph, which is similar to [6] but typically results in mod-

els with fewer parameters and better accuracy. In Huang et

al. [6]’s approach, graph attention networks are leveraged

to model the spatio-temporal interaction between pedestri-

ans. Gupta et al. [7] extend Social-LSTM [4], one of the

first few methods incorporating social interaction in pedes-

trian trajectory prediction, by making use of recurrent Gen-

erative Adversarial Networks (GANs). Chen et al. [13]

presented Augmented Semi Non-negative Sparse Coding

(ASNSC). In their method, trajectories are represented in

terms of motion primitives and pair-wise transitions be-

tween them. Jaipuria et al. [15] introduced Transferable

Augmented Semi Non-negative Sparse Coding (TASNSC)

as an extension of ASNSC [13]. In TASNSC, trajectories

are mapped into a normalized, environment independent

coordinate frame that helps learn a prediction model that

can generalize to environments with different geometries.

We make use this frame for learning environment agnostic

features in an incremental way. Inspired by TASNSC and

ASNSC, we build their“incremental” variant - SILA.

Incremental learning of motion behaviors There are very

few prior works in this category. Vasquez et al. [12] intro-

duced a Growing Hidden Markov Model (GHMM) based

incremental learning algorithm for pedestrian motion pre-

diction. However, their method requires complete pedes-

trian trajectories to train on, which are impractical to col-

lect in crowded environments. In contrast, our algorithm

can learn from incomplete or partially occluded trajectories.

Kulić et al. [17] presented an incremental learning approach

for full-body human motion prediction. In their method,

a set of motion primitives is pre-defined and the relation-

ship between them is incrementally learned using HMMs.

Such an approach cannot be directly applied to the task of

pedestrian trajectory prediction because of the wide variety

in plausible motion primitives that must be learned. Fergu-

son et al. [18] introduced a method for online learning of

motion patterns. In their work, newly learned behaviors are

compared with those in the pre-trained model using GPs to

detect novel behaviors and add them to the model. Our work

is similar to [18] in terms of adding novel behaviors to the

pre-trained model. However, we also fuse similar motion

primitives to enrich the learned model.

3. Background and problem statement

This section introduces notations and building blocks for

SILA, which is an incremental variation of ASNSC [13]

and TASNSC [15]. Training trajectories are repre-

sented as a set of tuples of 2D position and velocity -

(x(t),y(t),vx(t),vy(t)). Similar to Ref. [13], trajectories are

mapped into a grid world with N = r× c cells, where r and

c are the number of rows and columns respectively. Let the

training dataset denoted by XN×p consist of p trajectories.

The q-th trajectory can be represented as a column vector

trq ∈ R
N such that the k-th element of trq is the normal-

ized velocity vector of the q-th trajectory in the k-th grid

cell. Given this vectorized representation of training tra-

jectories, a set of L motion primitives (dictionary atoms),
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Figure 1. (a) Motion primitives are learned in a grid world using ASNSC [13]. Each color represents a motion primitive mi (here

i ∈ 1,2,3); (b) Segmentation of training trajectories into clusters using motion primitives shown in (a). Each cluster is best explained by

the motion primitive of the same color in (a) and the black arrows show the transition between motion primitives for cases in which the

corresponding element in the transition matrix T is non-zero; (c) Motion primitives and their transitions in (b) modeled as a directed graph,

i.e. a motion primitive graph. For brevity, only 3 motion primitives are shown in (a); (d) Two motion primitives mi and m j (red and blue)

from one model are similar to a motion primitive mk (green) from another model. In this example, mi and m j together provide a richer

and more primitive representation of motion behaviors as compared to mk alone. Thus, in fusing the two models, mk is replaced by mi.(e)

Replacing mk (green circle) with mi and m j, as explained in (d). All incoming edges of mk (red arrows) now enter mi and all outgoing

edges of mk (blue arrows) now exit from m j.The transition from mi to m j (dashed line) is kept as-is (figure best seen in color).

D = {m1, . . . ,mL}, are learned using sparse coding [13].

Each color in Figure 1(a) represents a single motion primi-

tive mi, learned from the trajectories shown in Figure 1(b).

Each motion primitive mi is represented as a set of normal-

ized cell-wise velocities {vk
i } . Here, vk

i is the velocity of mi

in the k-th grid cell (in N = 14×15 grid cells in Fig. 1(a)). D

is used to segment the training trajectories into clusters (see

Figure 1(b)). Each color in Figure 1(b) is one such cluster,

best explained by the motion primitive in Figure 1(a) in the

same color. These clusters are used to create the transition

matrix TL×L, where T (i, j) denotes the number of training

trajectories exhibiting a transition from mi to m j. Follow-

ing Ref. [13], each of these transitions is modeled as a two-

dimensional GP flow field [19, 20]. Thus, T is used to cre-

ate the set of transitions R such that R = {ri j|T(i, j) 6= /0}
The learned motion primitives and transitions are then rep-

resented as a dual motion primitive graph [21], wherein

graph nodes represent motion primitives and graph edges

represent the transition between motion primitives (see Fig-

ure 1(c)).Each transition ri j in R are modeled by consist two

independent GPs: GPi j = (GPx,GPy), that learn a mapping

from the two-dimensional position features (x,y) to veloc-

ities vx and vy respectively similar to [13]. These GPs are

also referred to as “motion patterns”. Note that we define

two types of transitions - “self transitions” which denote GP

models representing a single motion primitive; and “non-

self transitions” which denote GP models representing the

pairwise transition between two motion primitives (see Fig-

ure 1(c)). We use these definitions later in Section 4. The

sparse GP regression model presented by Snelson et al. [14]

is used to learn motion patterns.

Problem statement: Our goal is to design an algorithm

that incrementally learns and updates motion primitives and

transitions. Assuming new data becomes available in n-

th episode, a new model (M′(n)) is learned from this data.

The following section describes how SILA updates the pre-

trained model (M(n−1)) to M(n) using M′(n).

4. Proposed Algorithm

This section explains how SILA learns incrementally

from new data in three main steps: (1) Learn M′(n) from

data received in the n-th training episode; (2) Use similarity

between motion primitives in M(n− 1) and those in M′(n)
to create a similarity graph; (3) Using the similarity graph,

fuse M(n−1) with M′(n) to give M(n).

4.1. Pre­processing step: Normalize training tra­
jectories in the common frame

Trajectories are normalized and mapped into a common

frame prior to being used for training to aid knowledge

transfer across environments with different geometries. For

non-intersection datasets, trajectories are simply normal-

ized based on their x-y range. To account for different in-

tersection geometries in intersection datasets, we leverage

the common frame of Ref. [15] (with origin at the intersec-

tion corner of interest and axes aligned with the intersecting

curbsides). In this common frame, each data point is rep-

resented by its contravariant distance [22] from the curb-

sides. The transformed trajectories are also normalized by

the sidewalk width to account for scale differences across

intersections. All these operations combined help learn and

fuse motion primitives with similar underlying behaviors

even in scenarios in which the primitives are spatially differ-

ent in the original coordinate frame (see Ref. [15] for more

details).



4.2. Step 1: Learn motion primitives and transitions

In each training episode, first M′(n) is learned from

the new batch of data. This model is comprising of mo-

tion primitives (learned using ASNSC [13]) and transitions

(modeled using sparse GPs [14]) .

4.3. Step 2: Compute similarity score between mo­
tion primitives of two models

Given M′(n), the next step is to compute the similar-

ity between motion primitives in the pre-trained model

M(n− 1) and those in M′(n). Since the learned motion

primitives are essentially dictionary atoms [13], the mea-

sure of similarity between pairs of motion primitives used

in this work is inspired by the concept of coherence of dic-

tionary atoms [23, 24]. Mathematically, it is computed as

the normalized inner product of two dictionary atoms mi

and m′ j

S(mi,m
′
j) =

〈mi,m
′
j〉

|mi||m′j|
(1)

where, 〈·, ·〉 is the inner product, mi and m′ j denote the i-th

motion primitive in M(n−1) and the j-th motion primitive

in M′(n) respectively. Given Eq. (1), pairs of motion primi-

tives mi and m′ j with similarities greater than a pre-defined

threshold, β , are considered as matched motion primitives.

SILA finds all matched pairs of motion primitives between

M(n−1) and M′(n) and fuses them, as discussed below.

For the fusion process, M(n− 1) and M′(n) are repre-

sented by their dual motion primitive graphs [21]. Fig-

ure 1(c) shows the dual motion primitive graph of the model

shown in Figure 1(a), wherein all motion primitives are rep-

resented by nodes and there exists a directed edge from

nodes (e.g. mi → mk) if, and only if, at least one switch-

ing behavior from mi to mk is observed. For brevity, the

fusion mechanism is explained further using an example in

Figure 2. Figure 2(a) illustrates the dual motion primitive

graphs of models M(n−1) and M′(n). The similarity score

between nodes in two graphs is computed using Eq. (1) to

find the matched nodes (i.e. matched motion primitives).

Figure 2(b) extends the graphs (original graphs are faded)

in Figure 2(a) by adding extra edges in red that link the

matched nodes from the two original graphs such that:

ei, j′ = {(i, j′)|S(mi,m
′
j)≥ β}, ωi, j′ = S(mi,m

′
j). (2)

Eq. (2) indicates that an indirect weighted edge ei, j′ exists

if, and only if, the similarity score between motion prim-

itives mi and m′j is greater than the pre-defined threshold,

β . The weight of such an edge is equal to the similarity

score. This resulting new graph (called a similarity graph

and denoted by Gs), has been considered for map merg-

ing and graph matching [25, 26]. We leverage this abstract

graph to design an efficient fusion mechanism. Note that Gs
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Figure 2. (a) Motion primitive graph of pre-trained M(n− 1) in

green and new model M′(n) in brown (self transitions are omit-

ted for brevity), black arrows represent the directed transitions and

they are indexed. Red dashed rectangles show pair-wise matched

nodes between two models. (b) similarity graph Gs with threshold

of β = 0.6 is shown on top of the original graphs in (a), unmatched

nodes are faded for brevity. Edges of similarity graph with their

assigned weight (similarity score) are shown in red arrows.(note:

black arrow shows the intra-similarity between two nodes from

same model which is considered in case 2) As shown, Gs has three

connected components (dashed blue circles): CC3, CC2, CC1. In

CC3 the edge with least similarity is relaxed (crossed).(c) final mo-

tion primitive graph corresponding to updated model M(n) which

is created after fusing the matched nodes based on the topology

of connected components in (b) as described in the paper. Nodes

with no fusion are colored by their original model color and fused

nodes and edges are colored in dark red. Fusion is denoted by ’U’.

by definition does not include unmatched nodes which im-

plies that, as expected, the unmatched nodes are not going

to be fused. We can consider the similarity graph as a set of

connected components [27], as shown in dashed blue in Fig-

ure 2(b). The rest of this section presents fusion strategies

based on the topology of the connected components. Recall

each motion primitive is modeled by two GPs:(GPx,GPy),
which is represented by self-transition in dual motion prim-

itive graph. For the rest of this section, whenever two mo-

tion primitives or more are merged, their self- transitions,

i.e. their corresponding GPs, are also merged. The fusion of

motion primitives and GPs are explained later.

Connected components with one edge Also referred to

as one-to-one matching, this is the case when the connected

component comprises of two motion primitives (mi and

m′j), one from each model, that are similar. In this case,

the two matched primitives and their corresponding self-

transitions are merged (see Figure 2(b)-CC1, m′1 and m2).

Connected components with two edges This case hap-

pens when two nodes from one model (mi and m j) are



matched with a single node (m′k) from another model1 (see

Figure 2(b)-CC2, m5 and m3 are matched with m′3). The fu-

sion strategy now depends on the relationship between mi

and m j in their original dual motion primitive graph. These

relationships are investigated in the following order:

Case 1: There exists a transition from mi to m j. This im-

plies that mi and m j together have a richer and more primi-

tive representation of motion behaviours as compared to m′k
alone. Thus, m′k is replaced with mi and m j. All incom-

ing edges of m′k now enter mi and all outgoing edges of m′k
now leave m j (e.g. Figure 2(b)-CC2, and procedure shown

in Figure 1(d) and Figure 1(e)).

Case 2: No transition exists between mi and m j but they

are similar (i.e. S(mi,m j)≥ β , when two motion primitives

from one model are similar, we call it intra-similar). This

implies that the learned motion primitives mi and m j are

redundant, so the three motion primitives mi, m j and m′k
and their self-transitions are fused to reduce this redundancy

(see Figure 2(a)-CC3, black arrow shows m′6 and m′8 are

intra-similar).

Case 3: No transition exists between mi and m j and

they are not similar (i.e. S(mi,m j) < β ). This case hap-

pens when two motion primitives in one model are matched

to a part of another primitive in another model, while them-

selves are not overlapping. In our experiments, we observed

that such a case only arises when similarity threshold β is

too small and the matching is not meaningful. No action is

required in this case, however, selecting appropriate β min-

imizes these cases.

Connected components with three or more edges In

this case, the edge with the least similarity value is succes-

sively relaxed (removed) until the connected component has

only two edges left, which then allows for the use of Case 2

fusion strategy (see Figure. 2(b)-CC3). We did not observe

adverse effects on algorithm performance because of this

relaxation as this case was rarely encountered. However,

further investigation would benefit future work.

4.4. Step3: Model Fusion

As discussed, transitions and motion primitives between

two models M′(n) and M(n−1) are sometimes fused. This

part explains fusion process for transitions and primitives.

4.4.1 Fusion motion primitives and transitions

To effectively fuse a pair of motion primitives mi and m′ j,

we simply compute the element-wise average between the

two vectors, denoted by avg(mi,m
′
j), is given by:

avg(mi,m
′
j) =

1

N

N

∑
k=1

mk
i +m′

k
j (3)

1All cases are applicable to the reverse order of notations e.g. when m′i
and m′ j are matched with node mk , it is also considered as the case of

connected components with two edges.
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Figure 3. (a) Similar motion primitives of M(n− 1) (green) and

M′(n) (red). Matched primitives are fused (black) by considering

the cell-wise average of each vector. Here, β = 0.6. (b) Example

prediction using SILA. Trajectory is observed for 3.2 s (magenta)

and predicted for 4.8 s (blue). Prediction is a set of Gaussian dis-

tributions (blue shading). The number next to each distribution

shows the prediction likelihood. Ground truth is the dashed line.

where, N is the dimension of motion primitives, and mk
i is

the k-th element of mi. For example, in Figure 3(a), the av-

erage of mi (red arrows) and m′ j (green arrows) gives the

fused motion primitive m′′i (black arrows). The updated set

of motion primitives is denoted by D′′ and comprises of all

fused nodes and remaining non-fused nodes from the two

models. The rest of this section describes the process of

fusing the GP-based transitions (refer Section 3) between

motion primitives. Fusion of the transitions means the fu-

sion of their corresponding GPs.

As described in Section 3, each transition, either self

transitions or non-self transitions, is modeled as a pair of

two dimensional GP flow fields (GPx,GPy), where each GP

is represented by a sparse number of pseudo inputs. Let

matched transition in M(n−1) be denoted by r. For the new

model M′(n), the data associated with matched transition is

available and is denoted by d′. To fuse GPs associated with

matched transitions in M(n− 1) and M′(n), the GP regres-

sion method in Ref. [28] is used to update r incrementally

using d′ (note that data associated with r is assumed not

be available, because it is a transition in pre-trained model

and we have only access to pseudo inputs corresponding to

transitions in M(n− 1). Otherwise, we could simply learn

a new GP from new data and old data). (see edges 1 and 3′

are fused in Figure 2(c), also edges 3 and 7′ are fused.).

4.5. Prediction phase

Given an observed trajectory, the motion primitive cor-

responding to the most likely self-transition GP is obtained

and is referred to as the observed primitive. All transitions

from the observed primitive, as can be found in the transi-

tion set R, are considered as possible future directions. Re-

call each transition is modeled using GPs. Thus, predicted

future directions are mathematically represented as a set of

Gaussian distributions (refer Figure 3(b) - blue shades). The

set of predicted trajectories is then obtained by sampling

from these predicted Gaussian distributions.



5. Experimental Results

Two sets of experiments were conducted: (1) evaluate

the SILA learning process on different intersections, and (2)

compare SILA’s performance with prior work using non-

intersection datasets.

5.1. Evaluation metrics

Consistent with prior works [5–7], the following two

metrics were used to evaluate SILA’s performance:

1. Average Displacement Error (ADE) [16] defined as

the average Euclidean distance between the predicted and

ground truth trajectory over a fixed time horizon H:

ADE =
1

H

tobs+H

∑
i=tobs+1

∥

∥pi
pred− pi

gt

∥

∥

2
, (4)

where pt
pred and pt

gt are points at time t in the predicted

and ground truth trajectories respectively. tobs is the time

corresponding to the last observed point, before prediction

starts.

2. Final Displacement Error (FDE) defined as the pre-

diction error at the end of the fixed time horizon H [7]:

FDE =
∥

∥

∥
p

tobs+H

pred − p
tobs+H
gt

∥

∥

∥

2
. (5)

5.2. Transfer knowledge across intersections

As motivated in Section 1, intersections are challenging

domains for pedestrian trajectory prediction because of sev-

eral reasons. One such reason is the influence of intersec-

tion geometry such as sidewalk boundaries on pedestrian

behavior. The experiments in this section analyze the ability

of SILA to transfer knowledge across intersections of differ-

ent geometries. In this experiment, the model is trained on

the dataset Itrain = {IA, IB, IC, ID}, the components of which

were collected in three busy intersections {A,C,D} located

in two crowded cities of Boston and Cambridge, includ-

ing residential and business areas. IB was collected in Mc-

ity [29] to add more diversity. The training dataset includes

611 trajectories in total (see Figure 4). Post incremental

learning from these 4 datasets, the model is tested on a fifth

dataset {IE} with 114 trajectories collected at an intersec-

tion near MIT campus with a completely different geom-

etry. Trajectories are annotated 2.5 fps. Each test trajec-

tory is observed for 3.2 sec and predicted for 4.8 sec. We

sample 20 trajectories from the prediction distribution and

the best one is selected for evaluation. Figure 5(a) shows

SILA incrementally improves the prediction model while

simultaneously transferring knowledge across intersections

with different geometries. The order in which SILA trains

on the different datasets can influence the learning trend.

To analyze this effect, the training datasets are fed in dif-

ferent permutations. Results from five different permuta-

tions are shown in Figure 5(a). Prediction error, on an av-

erage, at the end of the 4th training episode is given by

ADE = 0.65± 0.03, while batch learning (TASNSC) on

the four datasets combined results in ADE = 0.69±0.006.

Learning using SILA results in a model comprising of 63

motion primitives and 194 transitions. In contrast, batch

learning learns 52 motion primitives and 198 transitions. In

this experiment, batch learning took 1 sec in average, how-

ever, SILA ’s learning on each mini batch data only took

0.05 sec which is 20 times faster than batch learning.

5.3. Ablation study

In order to select similarity threshold, We ran another

set of experiments on datasets (IA) collected in intersection

A. Data was collected using two 2D Lidars and three RGB

cameras and contains 1228 trajectories annotated at a fre-

quency of 2.5 fps. 1044 trajectories were used for train-

ing by splitting into mini-batches of 29 trajectories each

that were incrementally fed. This experiment is repeated

12 times in which the order of feeding mini-batches is shuf-

fled. ADE on the held-out test dataset is used for quanti-

tative analysis. We follow similar procedure in section 5.2

for evaluation (i.e. 8 frames observation, 12 frames for pre-

diction and choose the best trajectory among 20 samples).

To find the best similarity threshold, the experiments are

repeated for thresholds ranging from β = 0.5 to β = 1.0.

SILA-β denotes SILA with a similarity threshold of β . Fig-

ure 5(b) summarizes the results from these experiments.

Note the consistent decrease in ADE as the model is ex-

posed to more data. Increasing the similarity threshold dis-

courages the fusion of motion primitives (for β = 1 only

pairs of motion primitives that are exactly identical are

matched and fused). As shown in Fig. 5(c), β = 0.6 gives

the best results in terms of the trade-off between model size

(as a linear function of number of motion primitives and

transitions) and prediction error. We also studied SILA-

Naive in which the motion primitives are not fused (same

as β > 1). Figures 5(c) shows SILA-Naive model size is up

to 3× larger than that of SILA-0.6.

5.4. Comparison with Baselines

To compare SILA with prior works, we run another set

of experiments on datasets and setups similar to the ones

used in previous works [5–7]. The datasets used for this set

of experiments are: ETH [16] and UCY [30]. ETH consists

of two scenes - ETH and Hotel, and UCY contains three

scenes - ZARA1, ZARA2 and UNIV, which makes a total

of five datasets. These datasets are annotated at a frequency

of 2.5 fps. Similar to prior works, we use the leave-one-

out method in which 4 out of the 5 datasets are selected for

training and the model is evaluated on the fifth dataset. Sim-



Figure 4. Pedestrian trajectory data (blue curves) collected in 5 intersections denoted by the letters A−E with different geometries (right,

closed and open angle corners) described in the paper. Cyan arrows show intersection axes with the origin at the corner of interest. The

intersections and trajectories are shown in a bird’s eye view taken from Google Maps, however the trajectory data is collected locally on

the ground of each intersection, except for the data collected in B using GPS.
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Figure 5. (a) SILA prediction error (ADE) on the test data (IE ) using models incrementally trained on data from intersections shown in

Fig. 4. The datasets from intersections are used in the various ordering shown in different color, leading to different results. (b) Average

of ADE over 12 trials when the data is incrementally available in mini-batches of 29 trajectories from IA in Fig. 4, The similarity threshold

varies from 0.5 to 1. (c) Ablation study for choosing similarity threshold. Threshold β = 0.6 is selected for the best trade-off between

model size growth and prediction error (ADE).

ilar to [5–7], two additional data (ZARA3 and uni example

from UCY) are used for training but not for evaluation.

In the evaluation phase, each trajectory is observed for

3.2 s (8 frames) and future trajectory is predicted for the

next 4.8 s (12 frames). Except for the linear model (refer

Section 5.4.1), all other baselines and SILA are probabilis-

tic models that predict a Gaussian distribution. Following

prior works [5–7], we sample 20 trajectories from the pre-

dicted distribution and select the sampled trajectory closest

to ground truth for evaluation. Models trained using SILA

and SILA-Naive (refer Section 5.4.1) learn incrementally

and thus are sequentially fed datasets. There are many per-

mutations of the order of feeding training datasets (i.e. n! for

n datasets) and we randomly choose one such permutation

for these experiments, as summarized in Table 1.

5.4.1 Baselines

SILA-0.6 (i.e. with β = 0.6) is compared with the eight

baselines listed in Table 2 that lie in four categories: (1)

Linear model assuming constant velocity for prediction; (2)

TASNSC [15] which is an offline (batch) version of SILA;

(3) SILA-Naive which simply adds motion primitives and

transitions learned from new data (refer Section 5.3); (4)

Recent works on interaction-aware pedestrian motion pre-

Test dataset Order of providing training datasets

ETH uni examples, st3, st1, Zara3, Hotel, Zara2, Zara1

Univ(st1,st3) Hotel, Zara3, uni examples, Zara2, Zara1, ETH

Hotel uni examples,st3, st1, Zara3, ETH, Zara2, Zara1

Zara1 uni examples,st3, st1, Zara3, ETH, Zara2, Hotel

Zara2 uni examples,st3, st1, Zara3, ETH, Zara1, Hotel

Table 1. Order of feeding dataset to SILA and SILA-Naive models

diction: GAT [31], SGAN [7], STGAT [6], STSGN [32],

and Social-STGCNN [5].

5.4.2 Results

Figure 6(a) and Figure 6(b) show the trend of improving

ADE and FDE respectively as training datasets are incre-

mentally fed to models trained using SILA. Note not all

datasets help improve prediction error. For example, when

testing on Zara2 dataset, adding training data from ZARA1

and Hotel does not improve prediction. Figure 6(c) shows

that the model size growth rate for SILA is slower than

SILA-Naive which indicates the size efficiency of SILA.

Table 2 shows that while SILA outperforms all baselines

in terms of ADE on 2 out of the 5 test datasets, Social-

STGCNN (and in one case STGAT) consistently outper-



Algorithm ETH Hotel Univ Zara1 Zara2 Average

Linear* 0.92/2.20 0.37/0.84 0.62/1.44 0.45/1.04 0.58/1.33 0.53/1.24

SGAN-20V [7] 0.71/1.27 0.48/1.03 0.56/1.18 0.34/0.68 0.31/0.64 0.48/0.96

SGAN-20VP [7] 0.77/1.40 0.43/0.87 0.75/1.50 0.35/0.70 0.36/0.72 0.51/1.02

STGAT [6] 0.72/1.45 0.24/0.44 0.50/1.09 0.34/0.72 0.28/0.63 0.41/0.86

CGNS [33] 0.62/1.40 0.70/0.93 0.48/1.22 0.32/0.59 0.35/0.71 0.49/0.97

STSGN [32] 0.75/1.63 0.63/1.01 0.48/1.08 0.30/0.65 0.26/0.57 0.48/0.99

GAT [31] 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07

Social-STGCNN [5] 0.63/1.08 0.49/0.86 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.74

TASNSC [15] 0.78/1.40 0.42/0.90 0.61/1.34 0.50/1.05 0.52/1.14 0.56/1.16

SILA-Naive (ours) 0.77/1.83 0.28/0.63 0.60/1.31 0.38/0.84 0.43/0.90 0.49/1.10

SILA (ours) 0.56/1.23 0.27/0.63 0.55/1.25 0.29/0.63 0.32/0.72 0.39/0.89

observed

GT

linear

TASNSC

SILA (ours)

Table 2. Left: ADE/FDE of baselines compared to SILA for each test dataset using leave-one-out method. All models excepts linear model

are probabilistic. To evaluate these models, the best out of 20 sampled trajectories is considered similar to in [5, 6], samaller is better.

Results of SGAN, STGAT, social-STGCNN and TASNSC are obtained by running their code. Other baselines results are obtained from

their papers. Right: qualitative comparison of SILA with TASNSC, linear model and ground truth (GT) in a scene from ETH dataset.
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Figure 6. (a) SILA prediction error (ADE) on a held-out test set when training datasets are incrementally added as summarized in Table 1

(each experiment is shown in a different color). (b) SILA’s FDE for the experiment in (a). (c) Model size (number of parameters) growth

with SILA (solid lines) compared to that with SILA-Naive (dashed lines) as data is added incrementally according to (a).

form other methods, including SILA, in terms of FDE as

it accounts for pedestrian interaction and hence does better

in terms of long-term prediction. However, SILA had the

additional advantages of (i) transferring knowledge across

environments with different geometries; (ii) learning incre-

mentally from new data which requires lesser compute and

memory; and (iii) multi-modal prediction (i.e. SILA pre-

dicts a set of Gaussian distribution as opposed to a single

distribution). As a result SILA-0.6 can robustly generalize

to new data and achieve better ADE on average (refer last

column in Table 2). Moreover, SILA always outperforms

TASNSC, even though both have similar structure and learn

from similar data (see qualitative comparison on the right

side of Table 2). Fusion in SILA decreases redundancy in

motion primitives and thus reduces overfitting, which leads

to better generalization to new datasets than batch learn-

ing as well as SILA-Naive, where adding motion primitives

without fusion may lead redundant motion primitives and

increase overfitting. Fusion of motion primitives can also

create new motion primitives that are better representative

of pedestrian behaviors as compared to batch learning (with

the objective of minimizing the number of motion primi-

tives over the entire dataset) which can discourage learn-

ing motion primitives and transitions that represent under-

represented behaviors. Instead, these rare behaviors can be

captured and memorized through incremental learning.

6. Conclusion

This paper presents SILA for pedestrian trajectory pre-

diction in scenarios where the training data is incrementally

available. SILA consistently outperforms its batch learning

version (i.e. TASNSC) and on an average outperforms prior

batch learning methods in terms of ADE with 5% improve-

ment. Future work includes extension of SILA to multi-

agent learning problems.
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A. Implementation of SILA

Figure 7 summarizes all steps of SILA and the pseudo

code for main algorithm SILA is summarized in Algo-

rithm 1. In this section, some details on SILA implementa-

tion such as indexing motion primitives and transitions are

explained.

Pre-trained 

model

New

model

Measure 
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Figure 7. Block diagram of SILA

A.1. Initialize Indexes of Motion Primitives and
Transitions

SILA’s ultimate goal is to efficiently merge the pre-

trained model M(n− 1) with the new model M′(n) to get

a single model M(n) that is best representative of all mo-

tion behaviours seen so far. The first step towards this

goal is to re-index the motion primitives and transitions

from M(n− 1) and M′(n) to avoid repetition of indices.

Thus, initially the accumulated model M̂(n) simply com-

bines M(n− 1) with M′(n), such that D̂ = {D,D′} is of

size N1 +N′1. Similarly, the set of accumulated transitions

R̂ = {R,R′} is of size N2 +N′2 (Alg. 1,line 4) Each node

is represented by two virtual nodes, denoted by in and out,

and a virtual transition (edge): (in,out). Given this vir-

tual representation of each node, we need to re-index edges

such that all edges entering mk now enter mk,in; and all

edges exiting mk now exit mk,out . This implies that for every

transition edge (i, j) (i.e. edges exiting from mi and enter-

ing m j) in R̂edges re-indexing is done as follows: (i, j) 7→

(mi,out ,m j,in). In the beginning of each learning episode,

indices in and out for all nodes are initialized equivalently.

For instance, mk,in = mk,out = k for the k-th motion primi-

tive in accumulated motion primitive set.

A special set, called the fusion set, is also defined and

initialized as an empty set in this step. Eventually, it con-

tains a list of tuples of nodes that need to be fused. e.g. the

tuple (mi,m j) implies mi and m j need to be fused in the

model fusion step.

A.2. Qualitative results

Figure 8 shows SILA performance compared to two

baselines TASNSC, as its batch version, and linear model

(constant velocity) in three different scenarios in ETH. This

results show SILA always outperforms TASNSC and linear

model in predicting the pedestrian trajectory. (note: Fig-

ure 8(b) was also reported in main result section.)



Algorithm 1: M(n) = SILA(M(n−1),M′(n))

1 Input: previous model M(n−1){D,R} and incremental model M′(n){D′,R′}
2 Output: updated model M(n){D′′,R′′}

3 M̂(n)←{D̂{D : D′}, R̂{R : R′}}, /0← FuseSet

4 [D̂, R̂] = Reindex(D̂, R̂)
5 Gs = SimilarityGraph(D,D′)
6 CC =ConnectedComponents(Gs)
7 for k = 1 : |CC| do

8 ee = |edges(CCk)|, [h,c] = nodesIdx(CCk)
9 if ee == 1 then

10 mi,in = mi,out = min(mh,in,mc,in), i ∈ {h,c}
11 FuseSet← FuseSet ∪mh∪mc

12 else if ee == 2 then

13 for mi ∈ nodes(CCk) do

14 if Degree(mi) == 2 then

15 [w,q] = nbrsIdx(mi)//neighbor index

16 if (mw,mq) ∈ R̂ then

17 mi,in←mw,out

18 mi,out ←mq,in

19 else if S(mw,mq)≥ β then

20 ∀ j ∈ {w,q, i},m j,in = m j,out = min(mw,in,mq,in,mi,in)
21 FuseSet← FuseSet ∪mi∪mw ∪mq

22 else

23 CCk = Relaxedges(CCk,2)
24 Go to line 13

25 D′′ = FusePrimitives(FuseSet)

26 R′′ = Reindex&FuseEdges(R̂,D′′)
27 return M(n){D′′,R′′}
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Figure 8. Comparison of SILA prediction with two baselines (TASNSC and linear), when the trajectory is observed for 3.2 sec (green) and

predicted for 4.8 sec, the predictions are compared with ground truth (GT). (a) In this scenario all algorithms predict closely to the ground

truth. (b) In this scenario TASNSC and linear model fails to predict the pedestrian trajectory accurately. (c) In this scenario TASNSC and

SILA perform well, while linear model fails to predict accurately.


