
Efficient Reachability Analysis of Closed-Loop Systems
with Neural Network Controllers

Michael Everett, Golnaz Habibi, Jonathan P. How

Abstract— Neural Networks (NNs) can provide major em-
pirical performance improvements for robotic systems, but
they also introduce challenges in formally analyzing those
systems’ safety properties. In particular, this work focuses on
estimating the forward reachable set of closed-loop systems
with NN controllers. Recent work provides bounds on these
reachable sets, yet the computationally efficient approaches
provide overly conservative bounds (thus cannot be used to
verify useful properties), whereas tighter methods are too
intensive for online computation. This work bridges the gap
by formulating a convex optimization problem for reachability
analysis for closed-loop systems with NN controllers. While
the solutions are less tight than prior semidefinite program-
based methods, they are substantially faster to compute, and
some of the available computation time can be used to refine
the bounds through input set partitioning, which more than
overcomes the tightness gap. The proposed framework further
considers systems with measurement and process noise, thus
being applicable to realistic systems with uncertainty. Finally,
numerical comparisons show that our approach based on
linear programming and partitioning can give 10× reduction
in conservatism in 1

2
of the computation time compared to the

state-of-the-art, and the ability to handle various sources of
uncertainty is highlighted on a quadrotor model.

I. INTRODUCTION

Neural Networks (NNs) are pervasive in robotics due to

their ability to express highly general input-output relation-

ships for perception, planning, and control tasks. However,

before deploying NNs on safety-critical systems, there must

be techniques to guarantee that the closed-loop behavior of

systems with NNs will meet desired specifications. The goal

of this paper is to develop a framework for guaranteeing that

systems with NN controllers will reach their goal states while

avoiding undesirable regions of the state space, as in Fig. 1.

Despite the importance of analyzing closed-loop behavior,

much of the recent work on formal NN analysis has focused

on NNs in isolation (e.g., for image classification) [1]–

[6], with an emphasis on efficiently relaxing NN nonlin-

earities [7]–[13]. On the other hand, closed-loop system

reachability has been studied for decades, but traditional

approaches, such as Hamilton-Jacobi methods [14], [15], do

not consider NNs in the loop.

A handful of recent works [16]–[21] propose methods

that compute forward reachable sets of closed-loop systems

with NN controllers. A key challenge is in maintaining

computational efficiency while still providing tight bounds on

The authors are with Aerospace Controls Laboratory at Massachusetts
Institute of Technology, {mfe, ghabibi, jhow}@mit.edu.

This work was supported by Ford Motor Company.
Code: https://github.com/mit-acl/nn robustness analysis

Fig. 1. Forward Reachability Analysis. The objective is to compute the
blue sets Rt(X0), to ensure a system starting from X0 (yellow) ends in G
(green) and avoids A0,A1 (red). This is especially challenging for systems
with NN control policies.

the reachable sets. Moreover, the literature typically assumes

perfect knowledge of system dynamics, with no stochasticity.

To address the primary challenge of computational ef-

ficiency, we re-formulate the semi-definite program (SDP)

from [21] as a linear program (LP) and leverage tools

from [10]. While this relaxation provides substantial im-

provement in computational efficiency, it also introduces

some conservatism. Thus, the proposed algorithm trades

off some computational efficiency for bound tightness by

partitioning the input set, as motivated by [22]. Finally,

the proposed framework considers measurement and process

noise throughout the formulation, thus being more amenable

to applications on real, uncertain closed-loop systems.

This work’s contributions include: (i) a convex optimiza-

tion formulation of reachability analysis for closed-loop

systems with NN controllers, providing a computationally

efficient method for verifying safety properties, (ii) the use

of input set partitioning techniques to provide tight bounds

on the reachable sets despite large initial state sets, (iii) the

consideration of measurement and process noise, which im-

proves the applicability to real systems with uncertainty, and

(iv) numerical comparisons with [21] showing 10× tighter

accuracy in 1
2 the computation time via LP and partitioning,

and an application on noisy quadrotor dynamics.

II. RELATED WORK

Related work on reachability analysis can be categorized

into works on NNs in isolation, closed-loop systems without

NNs, and closed-loop systems with NNs. For instance,

machine learning literature includes many methods to verify

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

4384

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
13

48

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:50:42 UTC from IEEE Xplore. Restrictions apply.

properties of NNs, often motivated by defending against ad-

versarial examples [23]. These methods broadly range from

exact [24] to tight [13] to efficient [10] to fast [7]. Although

these tools are not designed for closed-loop systems, the NN

relaxations from [10] provide a key foundation here.

For closed-loop systems, reachability analysis is a stan-

dard component of safety verification. Modern methods

include Hamilton-Jacobi Reachability methods [14], [15],

SpaceEx [25], Flow* [26], CORA [27], and C2E2 [28],

[29], but these do not account for NN control policies.

Orthogonal approaches that do not explicitly estimate the

system’s forward reachable set, but provide other notions of

safety, include Lyapunov function search [30] and control

barrier functions (CBFs) [31].

Recent reachability analysis approaches that do account

for NN control policies face a tradeoff between computa-

tion time and conservatism. [16]–[18] use polynomial ap-

proximations of NNs to make the analysis tractable. Most

works consider NNs with ReLU approximations, whereas

[19] considers sigmoidal activations. [20], [32] introduce

conservatism by assuming the NN controller could output its

extreme values at every state. Most recently, [21] formulated

the problem as a SDP, called Reach-SDP. This work builds

on both [20], [21] and makes the latter more scalable by re-

formulating the SDP as a linear program, introduces sources

of uncertainty in the closed-loop dynamics, and shows further

improvements by partitioning the input set.

III. PRELIMINARIES

A. Closed-Loop System Dynamics

Consider a discrete-time linear time-varying system,

xt+1 = Atxt +Btut + ct + ωt

yt = CT
t xt + νt,

(1)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny are state, control,

and output vectors, At, Bt, Ct are known system matrices,

ct ∈ Rnx is a known exogenous input, and ωt ∼ Ω and

νt ∼ N are process and measurement noises sampled at

each timestep from unknown distributions with known, finite

support (i.e., ωt ∈ [
¯
ωt, ω̄t],νt ∈ [

¯
νt, ν̄t] element-wise).

We assume an output-feedback controller ut = π(yt)
parameterized by an m-layer feed-forward NN, optionally

subject to control constraints, ut ∈ Ut. We denote the closed-

loop system with dynamics (1) and control policy π as

xt+1 = f(xt;π). (2)

B. Reachable Sets

For the closed-loop system (2), we denote Rt(X0) the

forward reachable set at time t from a given set of initial

conditions X0 ⊆ Rnx , which is defined by the recursion

Rt+1(X0) = f(Rt(X0);π), R0(X0) = X0. (3)

C. Finite-Time Reach-Avoid Verification Problem

The finite-time reach-avoid properties verification is de-

fined as follows: Given a goal set G ⊆ Rnx , a se-

quence of avoid sets At ⊆ Rnx , and a sequence of

reachable set estimates Rt ⊆ Rnx , determining that ev-

ery state in the final estimated reachable set will be

in the goal set and any state in the estimated reach-

able sets will not enter an avoid set requires com-

puting set intersections, VERIFIED(G,A0:N ,R0:N) ≡
RN ⊆ G & Rt ∩ At = ∅, ∀t ∈ {0, . . . , N}.

In the case of our nonlinear closed-loop system (2), where

computing the reachable sets exactly is computationally

intractable, we can instead compute outer-approximations of

the reachable sets, R̄(X0) ⊇ Rt(X0). This is useful if the

finite-time reach-avoid properties of the system as described

by outer-approximations of the reachable sets are verified,

because that implies the finite-time reach-avoid properties of

the exact closed loop system are verified as well. Tight outer-

approximations of the reachable sets are desirable, as they

enable verification of tight goal and avoid set specifications,

and they reduce the chances of verification being unsuccess-

ful even if the exact system meets the specifications.

D. Control Policy Neural Network Structure

Using notation from [10], for the m-layer neural network

used in the control policy, the number of neurons in each

layer is nk∀k ∈ [m], where [i] denotes the set {1, 2, . . . , i}.

Let the k-th layer weight matrix be W(k) ∈ Rnk×nk−1 and

bias vector be b(k) ∈ Rnk , and let Φk : Rnx → Rnk be

the operator mapping from network input (measured output

vector yt) to layer k. We have Φk(yt) = σ(W(k)Φk−1(yt)+
b(k)), ∀k ∈ [m − 1], where σ(·) is the coordinate-wise

activation function. The framework applies to general ac-

tivations, including ReLU, σ(z) = max(0, z). The network

input Φ0(yt) = yt produces the unclipped control input,

ut = π(yt) = Φm(yt) = W(m)Φm−1(yt) + b(m). (4)

E. Neural Network Robustness Verification

A key step in quickly computing reachable sets of the

closed-loop system (2) with a NN control policy is to relax

nonlinear constraints induced by the NN’s nonlinear activa-

tion functions. Within a known range of a neuron’s input, a

nonlinear activation can be linearly bounded above/below.

Theorem 3.1 (From [10], Convex Relaxation of NN):
Given an m-layer neural network control policy

π : Rny → Rnu , there exist two explicit functions

πL
j : Rny → Rnu and πU

j : Rny → Rnu such

that ∀j ∈ [nm], ∀y ∈ Bp(y0, ε), the inequality

πL
j (y) ≤ πj(y) ≤ πU

j (y) holds true, where

πU
j (y) = Λ

(0)
j,: y +

m∑
k=1

Λ
(k)
j,: (b

(k) +Δ
(k)
:,j) (5)

πL
j (y) = Ω

(0)
j,: y +

m∑
k=1

Ω
(k)
j,: (b

(k) +Θ
(k)
:,j), (6)

4385

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:50:42 UTC from IEEE Xplore. Restrictions apply.

where Λ,Ω,Δ,Θ are defined recursively using NN weights

and activations (e.g., ReLU, tanh), as detailed in [10].

In a closed-loop system, Theorem 3.1 bounds the control

output for a particular measurement y. Moreover, if all that

is known is y ∈ Bp(y0, ε), Theorem 3.1 provides affine

relationships between y and u (i.e., bounds valid within the

known set of possible y). These relationships enable efficient

calculation of NN output bounds, using Corollary 3.3 of [10].

We could leverage [10] to compute reachable sets by

first bounding the possible controls, then bounding the next

state set by applying the extreme controls from each state.

This is roughly the approach in [20], [32], for example.

However, this introduces excessive conservatism, because

both extremes of control would not be applied at every state

(barring pathological examples). To produce tight bounds

on the reachable sets, we leverage the relationship between

measured output and control in Section IV.

IV. APPROACH

Recall that our goal is to find the set of all possible next

states, xt+1 ∈ Xout, given that the current state lies within a

known set, xt ∈ Xin. This will allow us to compute reachable

sets recursively starting from an initial set Xin = X0.

The approach follows the architecture in Fig. 2. After

first relaxing the NN controller using Theorem 3.1, we then

associate linearized extreme controllers with extreme next

states in Section IV-B. Then, using the linearized extreme

controller, we optimize over all states in the input set to

find extreme next states in Section IV-C. We extend the

formulation to handle control limits in Section IV-D, then

describe how to convert the solutions of the optimization

problems into reachable set descriptions in Section IV-E.

A. Assumptions

This work assumes that Xin is described by either:

• an �p ball for some norm p ∈ [1,∞] and radius ε, s.t.

Xin = Bp(x0, ε); or

• a polytope, for some Ain ∈ Rmin×nx , bin ∈ Rmin , s.t.

Xin = {xt|Ainxt ≤ bin},

and shows how to compute Xout as described by either:

• an �∞ ball with radius ε, s.t. Xout = B∞(x0, ε); or

• a polytope for a specified Aout ∈ Rmout×nx , meaning

we will compute bout ∈ Rmout s.t. Xout = {xt ∈
Rnx |Aoutxt ≤ bout}.

We assume that either Aout is provided (in the case of

polytope output bounds), or that Aout = Inx (in the case

of �∞ output bounds). Note that we use j to index the

state vectors, j to index polytope facets, and j to index

the control vectors. Sections IV-B and IV-C assume that

Ut = Rnu (no control input constraints) for cleaner notation;

this assumption is relaxed in Section IV-D.

B. Bounds on xt+1 from a particular xt

Lemma 4.1: Given an m-layer NN control policy π :
Rny → Rnu , closed-loop dynamics f : Rnx × Π →
Rnx as in Eqs. (1) and (2), and specification matrix

Aout ∈ Rnout×nx , for each j ∈ [nout], there exist two

explicit functions πLCL

:,j : Rny → Rnu and πUCL

:,j :
Rny → Rnu such that ∀j ∈ [nm], ∀xt ∈ Bp(xt,0, ε)
and ∀yt ∈ B∞(CT

t xt +
ν̄t+

¯
νt

2 ,
ν̄t−

¯
νt

2), the inequality

Aout
j,: f(xt, π

LCL

:,j) ≤ Aout
j,: f(xt, π) ≤ Aout

j,: f(xt, π
UCL

:,j) holds

true, where

πUCL

:,j (yt) = Υ
(0)
j,:,:yt + zU (7)

πLCL

:,j (yt) = Ξ
(0)
j,:,:yt + zL, (8)

letting

zU =
m∑

k=1

[
Υ

(k)
j,:,:b

(k) + 1nu

((
Υ

(k)
j,:,:

)T

Ψ(k)

)]
(9)

zL =
m∑

k=1

[
Ξ

(k)
j,:,:b

(k) + 1nu

((
Ξ

(k)
j,:,:

)T

 Γ(k)

)]
(10)

and ∀k ∈ [m], Υ(k) ∈ Rmout×nu×nu ,Ψ(k) ∈ Rmout×nk×nu ,

Υ
(k)
j,:,: = J̄

(k)
j,:,:Λ

(k) +
¯
J
(k)
j,:,:Ω

(k) (11)

Ψ
(k)
j,:,: = Δ(k)J̄

(k)
j,:,: +Θ(k)

¯
J
(k)
j,:,: (12)

Ξ
(k)
j,:,: = J̄

(k)
j,:,:Ω

(k) +
¯
J
(k)
j,:,:Λ

(k) (13)

Γ
(k)
j,:,: = Θ(k)J̄

(k)
j,:,: +Δ(k)

¯
J
(k)
j,:,:. (14)

using selector matrices J̄(k),
¯
J(k) ∈ {0, 1}nu×nk×nu ,

J̄
(k)
j,j,: =

{
eTj , if Aout

j,: Bt,:,j ≥ 0

0T , otherwise
(15)

¯
J
(k)
j,j,: =

{
0T , if Aout

j,: Bt,:,j ≥ 0

eTj , otherwise
, (16)

and Λ,Ω,Δ,Θ are computed from Theorem 3.1 with y0 =
CT

t (xt,0 +
ν̄t+

¯
νt

2), and ε = ε+
ν̄t−

¯
νt

2 .

Proof: For any particular measurement yt, after re-

laxing the NN according to Theorem 3.1, let Π(yt) =
{π|πL

j (yt) ≤ πj(yt) ≤ πU
j (yt)∀j ∈ [nu]} denote the set of

possible effective control policies. Denote the control policy

πUCL

:,j ∈ Π(yt) as one that induces the least upper bound on

the j-th facet of the next state polytope,

Aout
j,: f(xt;π

UCL

:,j) = max
π∈Π(yt)

Aout
j,: f(xt;π)

= max
π∈Π(yt)

Aout
j,: [Atxt +Btπ(yt) + ct + ωt]

=

[
max

π∈Π(yt)
Aout

j,: Btπ(yt)

]
+Aout

j,: [Atxt + ct + ωt] , (17)

Thus for yt,

πUCL

:,j =argmax
π∈Π(yt)

Aout
j,: Btπ(yt). (18)

The resulting control input ∀j ∈ [mt+1], j ∈ [nu] is,

πUCL

j,j (yt) =

{
πU
j (yt), if Aout

j,: Bt,:,j ≥ 0

πL
j (yt), otherwise

. (19)

Writing (19) in matrix form results in (7). The proof of the

lower bound follows similarly.

4386

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:50:42 UTC from IEEE Xplore. Restrictions apply.

πUCL(yt)

πLCL(yt)

yt

πL(yt)

πU (yt)

π(yt)

Xin
Yin

Xin

γU
t+1

γL
t+1

f(xt;π)

f(xt;π
UCL)

f(xt;π
LCL)

xt

xt+1

Xin

π

Fig. 2. Approach Overview for simple 1D system. Theorem 3.1 relaxes the NN to give affine relationships between observation yt and control: πU , πL.
Lemma 4.1 uses the system dynamics to associate πU , πL with the next state set. Lemma 4.2 optimizes the closed-loop dynamics over all states xt ∈ Xin

to compute bounds on the next state, γU
t+1, γ

L
t+1.

C. Bounds on xt+1 from any xt ∈ Xin

Now that we can bound each facet of the next state

polytope given a particular current state and observation, we

can form bounds on the next state polytope facet given a set
of possible current states. This is necessary to handle initial

state set constraints and to compute “t > 1”-step reachable

sets recursively as in (3). We assume xt ∈ Xin.

Lemma 4.2: Given an m-layer NN control policy π :
Rny → Rnu , closed-loop dynamics f : Rnx ×Π → Rnx as

in Eqs. (1) and (2), and specification matrix Aout ∈ Rnout×nx ,

for each j ∈ [nout], there exist two fixed values γU
t+1,j

and γL
t+1,j such that ∀xt ∈ Xin, the inequality γL

t+1,j ≤
Aout

j,: f(xt;π) ≤ γU
t+1,j holds true, where

γU
t+1,j = max

xt∈Xin

MU
j,:xt + nU

j (20)

γL
t+1,j = min

xt∈Xin

ML
j,:xt + nL

j , (21)

with MU ∈ Rnx×nx , nU ∈ Rnx defined as

MU
j,: =

(
Aout

j,:

(
At +BtΥ

(0)
j,:,:C

T
t

))
(22)

ML
j,: =

(
Aout

j,:

(
At +BtΨ

(0)
j,:,:C

T
t

))
(23)

nU
j = Aout

j,:

(
Bt

(
Υ

(0)
j,:,:

(
¯̄J
(0)
j,:,:ν̄t +

¯̄
J
(0)
j,:,:¯

νt

)
+ zU

)
+

ct + J̄
(0)
j,:,:ω̄t +

¯
J
(0)
j,:,:¯

ωt

)
(24)

nL
j = Aout

j,:

(
Bt

(
Ψ

(0)
j,:,:

(
¯̄̄
J
(0)
j,:,:ν̄t +

¯̄̄
J
(0)
j,:,:¯

νt

)
+ zU

)
+

ct +
¯
J
(0)
j,:,:ω̄t + J̄

(0)
j,:,:¯

ωt

)
, (25)

and where {¯̄J,
¯̄
J}, {¯̄̄J,

¯̄̄
J} are defined as in Eqs. (15) and (16),

but using Aout
j,: Bt,:,jΥ

(0)
j,:,:C

T
t and Aout

j,: Bt,:,jΨ
(0)
j,:,:C

T
t , respec-

tively, with Υ,Ψ, zU , zL, J̄,
¯
J computed from Lemma 4.1.

Proof: Bound the next state polytope’s j-th facet above,

Aout
j,: xt+1 = Aout

j,: f(xt;π) (26)

≤ Aout
j,: f(xt;π

UCL

:,j) (27)

≤ max
xt∈Xin

Aout
j,: f(xt;π

UCL

:,j) := γU
t+1,j (28)

= max
xt∈Xin

Aout
j,:

[
Atxt +Btπ

UCL

:,j (yt) + ct + ωt

]
(29)

= max
xt∈Xin

Aout
j,:

[
Atxt +Bt

(
Υ

(0)
j,:,:yt + zU

)
+

ct + ωt] (30)

= max
xt∈Xin

Aout
j,:

[
Atxt +Bt

(
Υ

(0)
j,:,:

(
CT

t xt + νt

)
+ zU

)
+ct + ωt] (31)

= max
xt∈Xin

(
Aout

j,:

(
At +BtΥ

(0)
j,:,:C

T
t

))
xt+

Aout
j,:

(
Bt

(
Υ

(0)
j,:,:νt + zU

)
+ ct + ωt

)
(32)

= max
xt∈Xin

(
Aout

j,:

(
At +BtΥ

(0)
j,:,:C

T
t

))
xt+

Aout
j,:

(
Bt

(
Υ

(0)
j,:,:

(
¯̄J
(0)
j,:,:ν̄t +

¯̄
J
(0)
j,:,:¯

νt

)
+ zU

)
+

ct + J̄
(0)
j,:,:ω̄t +

¯
J
(0)
j,:,:¯

ωt

)
, (33)

where (30) substitutes the definition of πUCL

:,j

from Lemma 4.1, (31) substitutes the observation from (2),

(32) separates terms that depend on xt, and (33) introduces

the worst-case realizations of process and measurement

noise. Substituting MU
j,:,n

U
j results in (20). The proof of

the lower bound follows similarly.
The optimization problems in Eqs. (20) and (21) have

convex cost with convex constraints xt ∈ Xin (e.g., polytope

Xin). We solve the linear programs (LPs) with cvxpy [33],

γU
t+1,j = LP(MU

j,:xt,A
in,bin) + nU

j (34)

γL
t+1,j = LP(−ML

j,:xt,A
in,bin) + nL

j . (35)

D. Accounting for Control Limits, Ut

The key terms in Lemma 4.1 can be modified to account

for control input constraints, as

πUCL

:,j (yt) = ProjUt

(
Υ

(0)
j,:,:yt + zU

)
(36)

πLCL

:,j (yt) = ProjUt

(
Ξ

(0)
j,:,:yt + zL

)
, (37)

A common example is box control input constraints. The

element-wise control input is,

πUCL

j,j (yt) =

{
clip(πU

j (yt),
¯
uj , ūj), if Aout

j,: Bt,:,j ≥ 0

clip(πL
j (yt),

¯
uj , ūj), otherwise

,

(38)

where clip saturates the control if it exceeds the limits.

However, this could be non-convex depending on the domain

of xt (and violates DCP rules in cvxpy [33] regardless). In

this work, we only apply part of the control input constraint,

πUCL

j,j (yt) =

{
min(πU

j (yt), ūj), if Aout
j,: Bt,:,j ≥ 0

max(πL
j (yt),

¯
uj), otherwise

, (39)

4387

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:50:42 UTC from IEEE Xplore. Restrictions apply.

and raise an error if the other limit is violated (which did

not happen in our experiments). Future work will investigate

solutions via convex relaxations [34] of the clip function.

E. Converting State Constraints into Reachable Sets
1) Reachable Sets as �∞ balls: Assume X0 is an �p ball.

Define {p, ε,x0} s.t. X0 ⊆ Bp(x0, ε) and let R̄0(X0) =
X0. Using the results of the previous section, use xt=0 ∈
Bp(x0, ε) to compute (γL

1,j, γ
U
1,j) for each index of the state

vector j ∈ [nx], specifying Aout = Inx
. Recursively compute

R̄t+1(X0) = B∞

(
γU
t+1,: + γL

t+1,:

2
,
γU
t+1,: − γL

t+1,:

2

)
. (40)

2) Reachable Sets as Polytopes: Assume X0 is an �p ball

or polytope. Either define {p, ε,x0} s.t. X0 ⊆ Bp(x0, ε)
or define {Ain,bin} s.t. Xin = {xt|Ainxt ≤ bin} and let

R̄0(X0) = X0. Using the results of the previous section, use

xt=0 ∈ Bp(x0, ε) or {Ain,bin} to compute (γL
1,j, γ

U
1,j) for

each index of output polytope facets j ∈ [mout], giving

R̄t+1(X0) = {xt|
[
Aout

−Aout

]
xt ≤

[
γU
t+1,:

−γL
t+1,:

]
}. (41)

In both cases, R̄t(X0) ⊇ Rt(X0)∀t ≥ 0, so these R̄t can be

used to verify the original closed loop system (2).

F. Tighter Reachable Sets via Partitioning the Input Set
NN relaxation methods can be improved by partitioning

the input set, particularly when the input set is large and of

low dimension. Here, we achieve tighter bounds by splitting

X0 into several subsets, computing N -step reachable sets for

each of the subsets separately, then returning the union of

all reachable sets from each subset. This idea falls into the

general framework from [35] of choosing a propagator and a

partitioner (e.g., uniform [36]) for the analysis, where Reach-

LP/SDP represent propagators for closed-loop systems.

V. NUMERICAL EXPERIMENTS

This section demonstrates our convex reachability analysis

tool, Reach-LP, on simulated scenarios. We first show an

example verification task and quantify the improvement in

runtime vs. bound tightness over the state-of-the-art [21] for

a double integrator system. We then apply the algorithm on

a 6D quadrotor model subject to multiple sources of noise.

A. Double Integrator
Consider the LTI double integrator system from [21],

xt+1 =

[
1 1
0 1

]
︸ ︷︷ ︸

At

xt +

[
0.5
1

]
︸ ︷︷ ︸
Bt

ut, (42)

with ct = 0, Ct = I2 and no noise, discretized with

sampling time ts = 1s. As in [21], we implemented a

linear MPC with prediction horizon NMPC = 10, weighting

matrices Q = I2, R = 1, and terminal weighting matrix

P∞ synthesized from the discrete-time Riccati equation,

subject to state constraints AC = [−5, 5]× [−1, 1] and input

constraint ut ∈ [−1, 1]∀t. We used MPC to generate 2420

samples of state and input pairs then trained a NN with

Keras [37] for 20 epochs with batch size 32.

Algorithm Runtime [s] Error
Reach-SDP [21] 20.31 206

Reach-SDP-Partition 347.14 19.35
Reach-LP 0.63 848

Reach-LP-Partition 9.87 19.87

(a) Runtime vs. Error

(b) Reachable Set Estimates (c) Over-approximation error

Fig. 3. Reachable Sets for Double Integrator. In (a), Reach-LP is 30×
faster to compute but 4× looser than Reach-SDP [21]. Reach-LP-Partition
refines the Reach-LP bounds by splitting the input set into 16 subsets,
giving 10× faster computation time and 2× tighter bounds than Reach-
SDP [21]. In (b), all reachable set algorithms bound sampled states across
the timesteps, starting from the blue X0, and the tightness of these bounds
is quantified per timestep in (c).

B. Comparison with Baseline

Fig. 3 compares several algorithms on the double inte-

grator system using a NN with [5,5] neurons and ReLU

activations. The key takeaway is that Reach-LP-Partition

provides a 10× improvement in reachable set tightness

over the prior state-of-the-art, Reach-SDP [21] (which does

not use input set partitioning), while requiring 1
2 of the

computation time. We implemented Reach-SDP in Python

with cvxpy and MOSEK [38]. All computation times are

reported from an i7-6700HQ CPU with 16GB RAM.

Fig. 3b shows sampled trajectories, where each colored

cluster of points represents sampled reachable states at a

particular timestep (blue→orange→green, etc.). Recall that

sampling trajectories could miss possible reachable states,

whereas these algorithms are guaranteed to over-approximate

the reachable sets. Reachable set bounds are visualized for

various algorithms: Reach-SDP [21], Reach-LP, and those

two algorithms after partitioning the input set into 16 cells.

The key takeaway is that while all approaches provide outer

bounds on the sampled trajectories, the algorithms provide

various degrees of tightness to the sampled points.

We quantify tightness as the ratio of areas between the

smallest axis-aligned bounding box on the sampled points

and the provided reachable set (minus 1), shown in Fig. 3c as

the system progresses forward in time. Note that as expected,

all algorithms get worse as the number of timesteps in-

crease, but that Reach-LP-Partition and Reach-SDP-Partition

perform the best and similarly. This provides numerical

comparisons of the rectangle sizes from Fig. 3b.

Note that both Reach-LP and Reach-SDP methods could

be improved by properly choosing the direction of polytope

facets. Additionally, while Reach-SDP can provide ellip-

soidal bounds given the quadratic nature of the formulation,

we implement only the polytope bounds in this comparison.

4388

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:50:42 UTC from IEEE Xplore. Restrictions apply.

(a) Runtime with NN depth (b) Number of Polytope Facets

Fig. 4. (a) Our linear relaxation-based methods (Reach-LP, Reach-LP-
Partition) scale well for deeper NNs (Reach-LP: 0.6 to 0.74s), whereas SDP-
based methods grow to intractable runtimes. Note that input set partitioning
multiplies computation time by a scalar.(b) Using Reach-LP, the bounding
shapes correspond to l∞-ball, 8-Polytope, and 35-Polytope. Reachable sets
become tighter with more facets.

C. Verification

A primary application of reachable sets is to verify reach-

avoid properties. In Fig. 3b, we consider a case with an

avoid set A = {x|x1 ≥ 0.35} (orange) and a goal set

G = [−0.25, 0.25] × [−0.25, 0.25] (cyan). Each algorithm,

except Reach-LP, verifies these properties for this 5-step

scenario, highlighting the importance of tight reachable sets.

D. Scalability to Deep NNs

To demonstrate the scalability of the method, we trained

NNs with 1-10 hidden layers of 5 neurons and report

the average runtime of 5 trials of reachability analysis of

the double integrator system. In Fig. 4a, while Reach-SDP

appears to grow exponentially (taking > 800s for a 10-layer

NN), our proposed Reach-LP methods remain very efficient

(< 0.75s for Reach-LP on all NNs). Note that we omit

Reach-SDP-Partition (∼ 16× more than Reach-SDP) from

this plot to maintain reasonable scale.

E. Ablation Study: �∞ vs. Polytopes

Recall that Section IV-E described reachable sets as either

polytopes or �∞-balls. Fig. 4b shows the effect of that

choice: as the number of sides of the polytope increases,

the reachable set size decreases. The tradeoff is that the

computation time scales linearly with the number of sides

on the polytope. Note that a �∞-ball is a 4-polytope, and

that X0 was chosen to show a different scenario than Fig. 3.

F. 6D Quadrotor with Noise

Consider the 6D nonlinear quadrotor from [21], [39],

ẋ =

[
03×3 I3
03×3 03×3

]
︸ ︷︷ ︸

At

xt +

⎡
⎣ g 0 0
03×3 0 −g 0

0 0 1

⎤
⎦T

︸ ︷︷ ︸
Bt

⎡
⎣tan(θ)

tan(φ)
τ

⎤
⎦

︸ ︷︷ ︸
ut

+

[
05×1

−g

]
︸ ︷︷ ︸

ct

+ωt, (43)

which differs from [21], [39] in that we add ωt as a

uniform process noise, and that the output is measured as

in (1) with Ct = I6, subject to uniform sensor noise. As

(a) No Noise (b) Sensor & Process Noise

Fig. 5. Reachable Sets for 6D Quadrotor. Only (x, y) states are shown,
even though the reachable sets are computed in 6D. Green boxes (Reach-
LP) bound the clusters of sampled points at each discrete timestep, starting
from the blue X0. It took 4.89 sec to compute the 12 reachable sets per
scenario. In (b), ν ∼ Unif(±0.001 · 16),ω ∼ Unif(±0.005 · 16).

in [21], the state vector contains 3D positions and veloc-

ities, [px, py, pz, vx, vy, vz], while nonlinearities from [39]

are absorbed into the control as functions of θ (pitch), φ
(roll), and τ (thrust) (subject to the same actuator constraints

as [21]). We implemented a similar nonlinear MPC as [21]

in MATLAB to collect (xt,ut) training pairs, then trained a

[32,32] NN with Keras as above. We use Euler integration

to account for (43) in our discrete time formulation.

Fig. 5 shows the reachable sets with and without noise.

Note that while these plots only show (x, y) position, the

reachable sets are estimated in all 6D. The first key takeaway

is that the green boxes (Reach-LP with �∞-balls) provide

meaningful bounds for a long horizon (12 steps, 1.2s shown).

Secondly, unlike Reach-SDP, Reach-LP is guaranteed to

bound worst-case noise realizations.

VI. FUTURE DIRECTIONS

Many open questions remain in analyzing closed-loop sys-

tems with NN controllers. How to mitigate the conservatism

due to the accumulation of approximation error over many

timesteps? Can similar methods be developed for nonlinear

systems or systems with uncertainty in At or Bt? Can the

ideas be extended naturally to continuous time systems,

rather than through Euler integration? How to handle the

non-convex nature of saturations for control limits? What

partitioning scheme is best for closed-loop reachability?

VII. CONCLUSION

This paper proposed a convex relaxation-based algorithm

for computing forward reachable sets of closed-loop systems

with NN controllers. Prior work is limited to shallow NNs

and is computationally intensive, which limits applicability

to real systems. Furthermore, our method accounts for mea-

surement of sensor and process noise as demonstrated on a

quadrotor model. The results show that this work advances

the state-of-the-art in guaranteeing properties of systems that

employ NNs in the feedback loop.

REFERENCES

[1] R. Ehlers, “Formal verification of piece-wise linear feed-forward
neural networks,” in ATVA, 2017.

4389

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:50:42 UTC from IEEE Xplore. Restrictions apply.

[2] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochen-
derfer, “Reluplex: An efficient SMT solver for verifying deep neural
networks,” in Computer Aided Verification - 29th International Confer-
ence, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part I, pp. 97–117, 2017.

[3] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Computer Aided Verification (R. Majum-
dar and V. Kunčak, eds.), (Cham), pp. 3–29, Springer International
Publishing, 2017.

[4] A. Lomuscio and L. Maganti, “An approach to reachability analysis
for feed-forward relu neural networks,” CoRR, vol. abs/1706.07351,
2017.

[5] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” in International
Conference on Learning Representations (ICLR), 2019.

[6] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai2: Safety and robustness certification of neural
networks with abstract interpretation,” in 2018 IEEE Symposium on
Security and Privacy (SP), pp. 3–18, May 2018.

[7] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, “On the effectiveness of
interval bound propagation for training verifiably robust models,”
arXiv preprint arXiv:1810.12715, 2018.

[8] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning,
and I. Dhillon, “Towards fast computation of certified robustness for
relu networks,” in International Conference on Machine Learning
(ICML), 2018.

[9] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems, pp. 10802–10813, 2018.

[10] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Effi-
cient neural network robustness certification with general activation
functions,” in Advances in neural information processing systems,
pp. 4939–4948, 2018.

[11] E. Wong and J. Z. Kolter, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” in ICML, vol. 80
of Proceedings of Machine Learning Research, pp. 5283–5292, 2018.

[12] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses
against adversarial examples,” in International Conference on Learn-
ing Representations (ICLR), 2018.

[13] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” arXiv preprint arXiv:1903.01287, 2019.

[14] C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game theoretic approach
to controller design for hybrid systems,” Proceedings of the IEEE,
vol. 88, no. 7, pp. 949–970, 2000.

[15] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pp. 2242–
2253, IEEE, 2017.

[16] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,”
in Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, pp. 157–168, 2019.

[17] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability
analysis of neural-network controlled systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[18] J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu, “Reachnn*: A tool
for reachability analysis of neural-network controlled systems,” in
International Symposium on Automated Technology for Verification
and Analysis, pp. 537–542, Springer, 2020.

[19] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
verifying safety properties of hybrid systems with neural network
controllers,” in Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 169–178, 2019.

[20] W. Xiang, H.-D. Tran, X. Yang, and T. T. Johnson, “Reachable set
estimation for neural network control systems: A simulation-guided
approach,” IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[21] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas, “Reach-sdp:
Reachability analysis of closed-loop systems with neural network
controllers via semidefinite programming,” in 59th IEEE Conference
on Decision and Control, 2020.

[22] W. Xiang, H.-D. Tran, J. A. Rosenfeld, and T. T. Johnson, “Reachable
set estimation and safety verification for piecewise linear systems

with neural network controllers,” in 2018 Annual American Control
Conference (ACC), pp. 1574–1579, IEEE, 2018.

[23] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations (ICLR), 2014.

[24] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification, pp. 97–
117, Springer, 2017.

[25] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable ver-
ification of hybrid systems,” in International Conference on Computer
Aided Verification, pp. 379–395, Springer, 2011.

[26] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An ana-
lyzer for non-linear hybrid systems,” in International Conference on
Computer Aided Verification, pp. 258–263, Springer, 2013.

[27] M. Althoff, “An introduction to cora 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015.

[28] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: A
verification tool for stateflow models,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
pp. 68–82, Springer, 2015.

[29] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala,
“Automatic reachability analysis for nonlinear hybrid models with
c2e2,” in International Conference on Computer Aided Verification,
pp. 531–538, Springer, 2016.

[30] A. Papachristodoulou and S. Prajna, “On the construction of lyapunov
functions using the sum of squares decomposition,” in Proceedings of
the 41st IEEE Conference on Decision and Control, 2002., vol. 3,
pp. 3482–3487, IEEE, 2002.

[31] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[32] G. Yang, G. Qian, P. Lv, and H. Li, “Efficient verification of control
systems with neural network controllers,” in Proceedings of the 3rd
International Conference on Vision, Image and Signal Processing,
pp. 1–7, 2019.

[33] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, 2016.

[34] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated non-
convexity for robust spatial perception: From non-minimal solvers to
global outlier rejection,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 1127–1134, 2020.

[35] M. Everett, G. Habibi, and J. P. How, “Robustness analysis of
neural networks via efficient partitioning with applications in control
systems,” IEEE Control Systems Letters, 2020.

[36] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set
estimation and verification for multilayer neural networks,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 11,
pp. 5777–5783, 2018.

[37] F. Chollet et al., “Keras.” https://keras.io, 2015.
[38] E. D. Andersen and K. D. Andersen, “The mosek interior point opti-

mizer for linear programming: an implementation of the homogeneous
algorithm,” in High performance optimization, pp. 197–232, Springer,
2000.

[39] D. M. Lopez, P. Musau, H.-D. Tran, and T. T. Johnson, “Verification
of closed-loop systems with neural network controllers,” EPiC Series
in Computing, vol. 61, pp. 201–210, 2019.

4390

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 18,2023 at 20:50:42 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T19:50:16-0400
	Preflight Ticket Signature

