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ABSTRACT

While competitive games have been studied extensively in the AI
community for benchmarking purposes, there has only been lim-
ited discussion of human interaction with embodied agents under
competitive settings. In this work, we aim to motivate research
in competitive human-robot interaction (competitive-HRI) by dis-
cussing how human users can benefit from robot competitors. We
then examine the concepts from game Al that we can adopt for
competitive-HRI. Based on these discussions, we propose a robotic
system that is designed to support future competitive-HRI research.
A human-robot fencing game is also proposed to evaluate a robot’s
capability in competitive-HRI scenarios. Finally, we present the
initial experimental results and discuss possible future research
directions.

CCS CONCEPTS

+ Human-centered computing — Systems and tools for inter-
action design; « Computing methodologies — Markov decision
processes; « Computer systems organization — Robotics.
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1 INTRODUCTION

Competition is one of the most common forms of human interaction,
yet competitive interaction has rarely been discussed in the context
of Human Robot Interaction (HRI). There has indeed been a large fo-
cus in HRI on cooperative interaction, such as human-aware motion
planning, object handover actions, and collaborative manipulation
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Figure 1: A robot-based athletic training system based on a
PR2 robot and a VIVE VR system. The human and the ro-
bot are playing a competitive fencing game. Detailed rules
of the game can be found under the System Design & Im-
plementation section. The upper figure shows the gameplay
in the VR environment, where the left sub-window shows
the game from a third-person perspective, and the right sub-
window shows the human’s perspective when wearing the
VR headset. The lower figure shows the game in actuality.
Please refer to this link for example gameplay videos.

[2, 4, 5, 16]. Conversely, the absence of studies in competitive robot
interaction may be due to anxieties concerning the actions of robots
whose interest do not necessarily align with our own. However,
these fears should not prohibit us from considering positive impacts
that competitive-HRI can yield, such as providing the participants
with motivation, inspiring their potential, and more.
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We initiate our research project in competitive-HRI by focusing
on how to create a competitive robotic agent that can challenge hu-
man users in athletic performance and physical exercise. Physical
exercise is essential to our physical and mental health. We hypoth-
esize that a robot with adversarial behaviors can provide athletic
practice or exercise sessions that are more personalized, effective,
and enjoyable. We believe that athletic practice and physical exer-
cise are scenarios in which nearly anyone can directly benefit from
competitive-HRI. In this paper, we first motivate competitive-HRI
by discussing psychological studies about how competition can
influence participants in a positive manner and how physical exer-
cise is more efficient and motivating when an appropriate amount
of competition is introduced. We then survey the literature of re-
inforcement learning in competitive games and related works in
robotic. Next, the design and implementation of our competitive-
HRI robotic system are introduced, along with a competitive fencing
game we designed to evaluate our system. Finally, we will present
initial experimental results and discuss the insights drawn from the
results.

2 COMPETITION

A number of psychological research studies indicate that competi-
tion can effectively increase participants’ performance, motivation,
and ability to learn in various scenarios. Plass et al. [20] compared
how individual, cooperative, and competitive game modes affect
learning, performance, and motivation in an educational mathe-
matics video game. They found that players in both competitive
and cooperative conditions solve significantly more problems dur-
ing the game than those in the individual condition. Furthermore,
competitive players may have developed better arithmetic skills
in the game, such that they were able to complete more problems
than those in other conditions. The quality of problem-solving
strategies was also affected by different game modes, where com-
petitive and individual players were less likely to employ inefficient
problem-solving strategies. The study also found that competitive
and collaborative games enhance enjoyment and situational in-
terest. Higher enjoyment refers to a participant having a higher
intrinsic desire and tendency to engage in an event [21]. Further-
more, higher situational interest refers to an event that is able to
elicit more attention and effective reactions from the participants
[10].

The effect of competition in physical exercise and athletic train-
ing has also been well studied. Feltz et al. [7] created a virtual
exercise partner that always slightly outperforms the human par-
ticipant in cycling or holding a plank exercise. Without knowing
it was a manipulated virtual peer, the participants felt less capable
than the peer and showed performance improvement during the
study. Viru et al. [31] explored the mechanisms of how exercise
performance can be enhanced under competitive conditions. They
found that, in a treadmill running test, the running duration was
prolonged by an average of 4.2% in competition, and was accompa-
nied by a significantly greater peak VO2 (maximum rate of oxygen
consumption) response. Inspired by these studies, this project aims
to create a robotic exercise partner that is able to challenge a human
user.
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3 RELATED WORK

3.1 Reinforcement Learning for Games

Competitive games like Chess, Checkers, and Go have been studied
extensively by the Al researchers for the purpose of benchmarking
the ability of algorithms to train an agent to learn, reason, and
plan [3, 23, 27]. Many algorithms that solve multi-agent Markov
games are designed under a multi-agent reinforcement learning
scheme, where agents develop emergent and complex behavior
through interacting with each other and co-evolving together [8,
9, 11, 26, 28, 30]. The following works have successfully extended
game RL to learn complex motor skills. Pinto et al. [19] proposed an
adversarial training method that can be applied to most existing RL
algorithms. Through the use of PPO and a very large training batch
size, Bansal et al. [1] created humanoid and quadrupedal agents that
play physically competitive games like soccer, wrestling, and more
in simulation. Lowe et al. [15] proposed a centralized action-value
function that takes the actions of all agents as input in order to
stabilize the DDPG algorithm [14] in multi-agent settings. In this
paper, we formulate competitive-HRI tasks as a multi-agent Markov
games problem, and we will evaluate two of these approaches and
compare their strengths and weaknesses under our competitive-HRI
environment.

3.2 Competitive and Physical Training Robots

There has been very limited human-robot interaction research that
explores competitive interactions. Kshirsagar et al. [12] studied
how a human’s performance was effected by a robot “co-worker”
working in the same workspace when competing for a real mon-
etary prize. Human participants were slightly discouraged when
competing against a high performance robot. Another observation
was that people would hold a more positive attitude toward a robot
with lower performance. Mutlu et al. [18] compared the perceptions
of an ASIMO robot when it was playing a video game cooperatively
or competitively with human participants. Their results suggested
that male participants were more engaged by competitive gameplay,
but the cooperative agent was more socially desired. Short et al. [25]
found that, when a robot cheated in a “rock-paper-scissors” game,
human participants had a greater degree of social engagement and
made greater attributions of mental state during the game.

On the other hand, there have been some attempts to use robotic
systems to assist in physical exercise. Fasola and Mataric [6] devel-
oped a socially assistive robot to provide real-time coaching and
encouragement for a seated arm exercise. Most participants did
find the robot to be helpful in their exercise and considered it to be
an exercise instructor. Siissenbach et al. [29] created an interactive
action-based motivation model for an indoor-cycling activity. In
order to motivate the user throughout the exercise section, the
robot employed communication strategies according to the user’s
physical state and condition. Their system successfully increased
users’ workout efficiency and intensity. Sato et al. [22] created a
robotic system to assist the training of volleyball players. The sys-
tem has sufficient mechanical capability to imitate the motion and
strategy of top volleyball blockers.

Each of these studies focused on one or a very small set of com-
petitive scenarios. In addition, most of these scenarios only require
very limited and simple robot motions. In this work, we examine
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the concepts from game Al that we can adopt for competitive-HRI.
Furthermore, we design a robotic system that can potentially play
various physically competitive games against a human player.
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Figure 2: A block diagram demonstrating the pipeline of the
proposed robotic system.

4 SYSTEM DESIGN & IMPLEMENTATION

We created a robotic system to explore whether a robot can effec-
tively improve human athletic training under competitive condi-
tions. In this section, we will introduce our competitive-HRI robotic
system. A preview of the system pipeline is shown in Fig.2.

4.1 Evaluation Environment

A zero-sum fencing game environment was created to train and
evaluate our agents. It is an attack and defense game where the hu-
man is the antagonist and the robot is the protagonist. A screenshot
of the fencing game in the Mujoco simulation environment is shown
in Fig. 3. Because the overall form-factor of a PR2 robot is similar
to a human being, both agents are represented by a PR2 model in
the simulation. The antagonist agent on the left scores by placing
its bat within the orange spherical(target) area located between
the two agents. The antagonist’s score will increase by 1 for every
0.01 seconds that its bat is placed within the target area without
contacting the opponent’s bat. However, the antagonist will receive
-10 points of score deduction if its bat is placed within the target
area and makes contact with the protagonist’s bat simultaneously.
Meanwhile, the protagonist agent on the right’s goal is to minimize
the antagonist’s score in a game. Moreover, the protagonist will lose
the game immediately if its bat is placed within the target area for
more than 2 seconds. Each game will last for 20 seconds. The obser-
vation space for both agents is represented by the following tuple:
O" = 0" = (py. pr.vp. vr 1)
Where pj, and p, are the Cartesian pose of the bat frame for the
human player and robot player respectively. v, and v, describe the
velocity of humans’ and robots’ bat. ¢ specifies the game time in
seconds.

4.2 Hardware Components

The physical system is designed and built based on a PR2 general-
purpose robotic research platform. The PR2 robot has two 7 degrees
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Figure 3: The fencing game in Mujoco simulation environ-
ment. The left agent simulates the human antagonist player,
and the right agent simulates the robot protagonist player.

of freedom(DoF) arms, and its overall form-factor is similar to a
human adult. It is therefore a suitable embodied agent for physical
interaction with a human. An HTC VIVE VR headset and two
controllers serve two purposes in this system: First, the use of the
headset and controllers allows the robot to easily track the pose
of the human’s head and hands. Second, VR technology provides
an immersive experience to users, and it is commonly used in HRI
research that requires a particular interaction scene [13, 17]. By
synchronizing the actual robot’s location and joint angles to the
PR2 model within the VR environment, human users will be able
to see the robot’s behavior in real-time. Consequently, this system
has the advantages of both the real and virtual environment, where
actual physical contacts, robot motions, and ambient sound can be
perceived by the human user, yet, the experimental environment
can be easily and quickly modified based on the requirements of
different tasks.

4.3 Learn to Play Games

We evaluated the performance of two multi-agent actor-critic al-
gorithms trained in the fencing game environment. In the first
approach, we combined the iterative training structure from [19]
and the classic PPO algorithm[24]. The detail of this approach is
presented in Algorithm 1.

The protagonist’s parameters Gf will first be trained by collect-
ing trajectories that result from playing against the antagonist with
a static policy. This continues until the protagonist’s policy achieves
good performance against the antagonist’s current policy. The an-
tagonist will then be trained against the protagonist with a static
policy in order to find a policy v with parameters 6} that the pro-
tagonist’s policy is not robust to. This training sequence is repeated
for Njyer iterations. Both agents are updated by optimizing the PPO
clipped surrogate objective. Since this method could suffer from
stability problems when Nj;¢, is large, we ran the algorithm with
Niter = 2, and receive a robot agent that can play the fencing game
sufficiently well.

In the second approach, we directly apply the algorithm in [1]
to our environment. This method also trains both agents in an
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Algorithm 1: Iterative Two-Agent Training

Input: Environment &; Stochastic policies y and v
Initialize: Parameters 961 for pand 0 for v
fori=1,2,..Njter do
Iz H
0 <0y
for j = 1,2, Ny do
rollout « roll(&, HetVor » Ntraj)
9;1 «— PPO_Update(rollout)
end
0 <0/,
for j =1,2,..N, do
rollout « roll(&, pgu, vgv, Ntraj)
0} < PPO_Update(rollout)
end

end

iterative scheme. Nevertheless, when training each of the agents,
instead of having such an agent face against the latest opponent’s
policy, this algorithm proposed to randomly load a previous version
of the opponent’s policy from history. When using a very large
batch size, this algorithm demonstrated better stability during a
long sequence of training.

5 INITIAL RESULT & DISCUSSION

We were able to create a robotic agent with reasonable performance
by using Algorithm 1. Fig. 4 shows the antagonist’s score through-
out the iterative training process. The inclining green curves in-
dicate the antagonist learns to score higher while avoiding the
penalization from contacting the protagonist’s bat. The declining
red curves indicate the protagonist learns to minimize the antago-
nist’s score. Each iteration is stopped when convergence is detected
or a timeout occurs. The algorithm from [1] provides more stable
training in a longer training sequence, and the resulted policies are
seemingly more sophisticated comparing to those resulted from
Algorithm 1. Due to the time limitation, we will compare and eval-
uate the two learning methods in our future works. Although we
are still experimenting and improving the RL learning process, the
other parts of the robotic system are ready for experiments. We
performed an initial experiment with a policy that has been trained
with Algorithm 1. In this experiment, one human participant was
asked to play five consecutive games with the PR2 robot. Table
1 presents the participant’s score and average heart rate in each
game.

The human participant got a negative score in the first game
because he made contact with the robot’s bat frequently. However,
the participant was able to quickly make adjustments and scored
increasingly higher in the consecutive games. Meanwhile, the par-
ticipant’s heart rate also increased when playing the games with the
robot. The participant has a baseline average heart rate of 83 BPM
when resting and 111 BPM when walking. The participant’s faster
heart rates during the competitive games indicate that he exerted
greater physical effort compared to the two baseline scenarios.

Since this project is still in the development stage, there are still
many interesting questions that need to be explored and answered.
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Antagonist Score During the Training Process
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Figure 4: Antagonist score in the fencing game during the
iterative training in Algorithm 1. The antagonist agent is
trained first, and Njze, = 2.

Game | Game | Game | Game | Game
1 2 3 4 5
Human
-541 503 329 830 754
Score
Average
Heart Rate | 124.9 129.0 144.6 150.8 144.5
(BPM)

Table 1: Game scores and average heart rate of the human
participant during five consecutive competitive human-
robot fencing games.

From the RL perspective, finding algorithms that can stably create
more sophisticated control policies for competitive-HRI problems
is essential. On the other hand, our initial experiment data shows
that the human participant’s performance was gradually increasing
during the games. Creating a robot agent that can learn from small
amounts of real world data and quickly improve its policy can help
the human’s performance improve faster. Moreover, it will be useful
if the robot can help a participant achieve certain training goals.
From the user experience perspective, it is important to understand
what aspects of competitive-HRI are enjoyable to human users, and
what can possibly results in negative emotions.
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