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ABSTRACT Most of the consensus-based task allocation algorithms assume reliable and unlimited com-
munication between the agents. However, this assumption can be easily violated in real environment with
limited bandwidth and message collisions. This paper presents a deep reinforcement learning framework in
which agents learn how to schedule and censor themselves amongst the other agents competing for access to
a limited communication medium. In particular, the process learns to schedule the communication between
agents to improve the performance of task allocation in environments with constrained communication in
terms of limited bandwidth and message collision. The proposed approach, called Communication-Aware
Consensus-Based Bundle Algorithm (CA-CBBA), extends the previous CBBA that the learned communica-
tion policy enables efficient utilization of the shared medium by prioritizing agents with messages that are
important for the mission. Furthermore, agents in denser parts of the network are censored appropriately
to alleviate the message collision and hidden node problems. We evaluate our approach in various task
assignment scenarios, and the results show that CA-CBBA outperforms CBBA in terms of convergence
time, rate of conflict resolution, and task allocation reward. Moreover, we show that CA-CBBA yields
a policy that generalizes beyond the training set to handle larger team sizes. Finally, the results on time-
critical problems, such as a search-and-rescue mission, show that CA-CBBA also outperforms the baselines
considered (e.g., CBBA, MCDGA, and ACBBA) in terms of number of unassigned and conflicted tasks in
most of the scenarios.

INDEX TERMS Decentralized task allocation, constrained communication, multi-agent reinforcement
learning, censoring message, value of information.

I. INTRODUCTION
Multi-Robot Task Allocation (MRTA) has been used in a
wide range of applications such as defense [4], search-and-
rescue [5], [6], agricultural spraying [7], and surveillance [8].
MRTA can be viewed as a generalized version of the Travel-
ing Salesman Problem or Vehicle Routing Problem, both of
which are shown to beNP-Hard [9], [10]. Hence, finding opti-
mal solution to MRTA becomes computationally intractable.
The state of the art algorithms trade-off optimality for reduced
algorithmic complexity. Several centralized approaches that
use particle swarm optimization [11], [12] and genetic algo-
rithms [13]–[15] have been developed to solve MRTA.
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However, they require the agents continuously communicate
to a central server that solves the planning problem and then
sends the instructions back. This central planner makes the
algorithm not be scalable to larger teams as agents have to
stay within its communication range. Furthermore, central-
ized approaches are susceptible to single point failures. For
instance, an adversary can derail the planning mission by
successfully attacking only the central planner.

Decentralized algorithms based on market-based
approaches [16]–[18], bio-nspired approaches [19], [20], and
consensus algorithms [21] have been proposed to address the
issues associatedwith centralized approaches. However, most
of the decentralized approaches assume the communication is
reliable with unlimited bandwidth, or they assume the agents
are communicating with the agents in a fully connected
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network during the task allocation [22]. Such assumptions
can be easily violated in real world scenarios such as search
and rescue mission when the task allocation can be operated
among agents with limited range of communication or com-
munication channel with limited bandwidth. Ref. [23]–[25]
showed the detrimental effects of communication constraints
posed by realistic communication environments on the per-
formance of task allocation algorithms. Ref. [26] analyzed
the effect of lossy communication between the auction-
eer and bidders on solution quality in auction based task
allocation problem and showed that the quality of differ-
ent auctions degrade in different ways. Ref. [23] simulated
communication in the ns-3 network simulator and showed
that performance degrades as the team size increases due
to increased message collisions and channel errors. In this
work, we address two communication constraints in net-
worked agents;(i) communication bandwidth and (ii) mes-
sage collision, by presenting a new learning-based algorithm,
Communication-aware consensus based bundle algorithm
(CA-CBBA), for decentralized task allocation. The main
contributions of this paper are:

1) By formulating the communication policy as a
multi-agent deep reinforcement learning, we co-design
CBBA and the communication policy used by the
agents to improve the performance of task allocation
in realistic communication networks.

2) Leverage two local features, namely local communi-
cation graph density (later called the Bron-Kerbosch
feature) and Value of Message (VoM) to learn a decen-
tralized communication policy that adaptively allocates
communication resources across the team to achieve
efficient message passing.

3) CA-CBBA prioritizes agents with useful information
and censors agents that can cause the communication
medium to be clogged up, improving the throughput by
≈15% and the convergence time by≈10x compared to
baseline CBBA in ad-hoc networks.

4) Demonstrate that CA-CBBA outperforms other base-
lines in a time-sensitive application such as search and
rescue and time scheduling problems in most of the
scenarios.

5) The policy learned from CA-CBBA can be generalized
to different team sizes beyond the size of the training
set and different task numbers.

A. OUTLINE
The article is organized as follows. Related work is presented
in Section II. In section III, we review related background
such as CBBA and communication protocols that are relevant
to understand following sections. In Section IV, we pro-
pose learning-based approach, CA-CBBA, which uses two
features of local communication graph density and value
of message, to learn an efficient communication policy for
agents running CBBA under communication constraints.
Section V presents a comparison of convergence properties

of CA-CBBA against other baselines. This is followed by an
ablation study that identifies the contribution of each compo-
nent of the algorithm. Additionally, we present applications
of CA-CBBA to search and rescue and time scheduling prob-
lems. Concluding remarks are provided in Section VI.

II. RELATED WORK
Choi et al. [1] proposed CBBA by combining market-based
and consensus-based algorithms. With assumption on perfect
communication, it is proven CBBA achieves feasible solu-
tions identical to the centralized greedy algorithm. Under
the diminishing marginal gain (DMG) [27] assumption on
marginal scoring function, CBBA is proven to converge to
a conflict-free assignment and be robust to both the inconsis-
tencies in situation awareness across the fleet and variations
in the communication network topology.

CBBA has been extended to other complex, uncertain
and dynamic environments. Bertuccelli et al. [28] presented
techniques to avoid polygonal obstacles during mission
using CBBA. To deal with asynchronous communica-
tions, Johnson et al. [3], [29] developed rules for conflict
resolution in asynchronous networks. The proposed local
de-confliction rules introduce rebroadcasting and not broad-
casting options to deal with ambiguous timestamps and pre-
vent unnecessary communication. Furthermore, this method
can obtain sub-optimal solutions in polynomial time, mak-
ing it well suited to real-time dynamic environments.
Buckman et al. [30] introduced CBBA with partial replan-
ning (CBBA-PR) to include dynamic tasks that appear after
or while the team is in the process of allocating previously
known tasks. CBBA-PR reallocates a portion of previous
allocation before each iteration to trade off the solution
quality and algorithm convergence in dynamic environ-
ments. An extension of CBBA, termed heterogeneous robots
consensus-based allocation (HRCA) [31] handles heteroge-
neous robot networks. Unlike CBBA, the bundle construction
phase and conflict resolution phase of HRCA disregard the
constraint on the maximum number of tasks assigned to each
agent and a bundle resize phase is performed after to handle
the associate constraint violations.

This work extends CBBA to execute in environment with
communication constraints including the bandwidth andmes-
sage collision. In our approach, each agent schedules and
censors itself based on the network density and its message
importance, which shows the improvement of the CBBA in
terms of number of conflicted tasks and convergence time.

There exist several work that addressed different con-
straints in task allocation such as resource constraints [32],
[33], time and spatial constraints [34]–[36], and envy mini-
mization [37]. Previous attempts at addressing communica-
tion constraints in multiagent algorithms can be classified
into two categories. The first is what we classify as the Algo-
rithm approach [38]–[43] that attempts to reduce the number
of messages by selectively allowing informative agents or
censoring uninformative agents.
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Kim et al. [2] presented MCDGA that modifies the con-
sensus phase of the original CBBA algorithm to prune
unwanted messages. Agents in MCDGA unicast (to a spe-
cific agent) or broadcast (to neighbors) their messages based
on the local communication rules defined by the algorithm.
Recently, [22] used meta reasoning approach to switch
between different task allocation algorithms based on the
communication quality, but that work assumed the agents
have a fully connected network. Our work relaxes that
assumption and can be utilized in ad-hoc networks that might
suffer from message collision and the hidden node problem.

Ref. [44] presented grouped CBBA (G-CBBA) for group-
ing the UAVs based on their task preference achieved by the
initial guesses. The results shows the amount of communi-
cation reduced compared to CBBA. However, this approach
requires information about UAV’s task preference and it can-
not be useful for homogeneous agents with no preference in
accomplishing the tasks. In general, the algorithm approaches
do not explicitly model the communication protocol and suf-
fer from issues such as latency and low network throughput.

An alternative direction is called the Communication pro-
tocol approach, which attempts tomodel communication pro-
tocols and find optimal protocol parameters that work best for
the given multiagent algorithm [45]–[47]. For example, [23]
compared the performance of CBBA when using different
transport layer protocols and concluded that TCP with IEEE
802.11b unicast reduced message collisions. Although, these
approaches aim at incorporating communication constraints,
they do not utilize information about the algorithm to filter
uninformative messages resulting in a ‘‘clogged up’’ com-
munication medium. Although several approaches in com-
munication protocols consider handshaking mechanism such
as RTS/CTS in CSMA/CA protocol to reduce the hidden
node problem [48], this handshaking introduces latency in
message passing, which is a limitation of these protocols in
real-time and time-critical task allocations, such as search and
rescue.

In recent years, deep learning-based methods have been
used for learning the communications in environments with
limited bandwidth or limited resources [49]–[51]. The work
by Foerster et al. [52] is considered as the first attempt
that used deep reinforcement learning (DRL) for learn-
ing communication protocols. Kim et al. [39] presented a
learning-based method for scheduling the communication for
RL frameworks based on value of importance. Our work
instead learns scheduling and censoring to improve the qual-
ity of task allocation algorithms, i.e. CBBA.
Our work, to the best of our knowledge, is the first

DRL method to combine communication protocol and algo-
rithm protocol approaches to improve decentralized task
allocation performance, when agents are communicated via
Wireless ad-hoc communication. Although our model is
customized for improving the CBBA reward function, but
it can be extended to other task allocation approaches
with different objective function, which is left for future
work.

III. BACKGROUND
A. DECENTRALIZED TASK ALLOCATION
The goal of task allocation is to find a conflict-free matching
for a set of Nt tasks (J ) to a set of Nu agents (I) that
maximizes some global reward. Each agent can take up to
Lt tasks defined by physical limitation or planning horizon.
If xij ∈ {0, 1} is the decision variable that indicates whether
task j is assigned to agent i and cij is the reward for assigning
task j to agent i, the problem can be stated as

max
Nu∑
i=1

( Nt∑
j=1

cij(xij, ρi)xij

)

s.t,
Nt∑
j=1

xij ≤ Lt , ∀i ∈ I

Nu∑
i=1

xij ≤ 1, ∀j ∈ J (1)

Nu∑
i=1

Nt∑
j=1

xij = min{NuLt ,Nt } = Nmin

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

ρi is the list of tasks allocated to agent i in order of their
execution. An assignment is conflict-free when each task
is assigned to no more than one agent (second constraint
in Eq.1. CBBA [1] uses an auction-based task selection
and consensus-based conflict resolution process to solve the
decentralized version of the above problem.

CBBA consists of two phases - the bundle construction
phase that utilizes greedy task selection to build task sequence
for each robot and the conflict resolution phase that uses a
consensus routine based on local communication to achieve
global agreement.

In every round of CBBA, each agent i shares its state
information (winning bids list yi ∈ RNt , winning agent list
zi ∈ INt and time-stamp of the recent information exchange
si ∈ RNu ) with its neighbors. In the conflict resolution phase
of CBBA, these messages are used to resolve conflicts based
on an extensive set of rules listed in [1]. If D is the diameter
of the communication graph formed by the agents, CBBA
is shown to converge to the same solution as centralized
greedy algorithm SGA in NminD rounds in the worst-case
scenario. However, it is assumed there is no constraints in
communication between agents.

B. COMMUNICATION CONSTRAINTS
The main contribution of this work is to co-design the
CSMA/CA protocol to address two challenges in communi-
cation constrained environments. In our model, we assume
agents running CSMA/CA medium access control scheme,
and UDP is considered as the transport layer protocol.
Although TCP provides reliable data transmission, we use
UDP as it allows for broadcasting which is inherently effi-
cient for consensus algorithms. Furthermore, [23] shows that

VOLUME 10, 2022 19755



S. Raja et al.: Communication-Aware Consensus-Based Decentralized Task Allocation

FIGURE 1. (a) CSMA/CA scheme with fixed contention window size (cw). (b) shows the proposed version of CSMA that
allows for censoring and priority scheduling based on a learned communication policy (attention to the green boxes
that has been added to original CSMA (purple boxes) in design).

FIGURE 2. Hidden node problem. Two agents (blue and green), not in
sensing range of each other, broadcast message at the same time
resulting in a ‘‘message collision’’. The information carried by these two
messages cannot be recovered by yellow agent.

consensus times for CBBAunder TCP andUDP unicast mode
are far longer compared to UDP broadcast.

Fig. 1a shows the working of CSMA/CA algorithm. Prior
to transmission, nodes sense the medium for traffic. If the
medium is found to be busy, the transmission is deferred for a
random interval chosen from a fixed contention window size
(generally chosen to be 16). This random interval reduces
the likelihood of two or more nodes waiting to broadcast
to start transmitting immediately upon termination of the
current transmission, effectively reducing the incidence of
collision. Running CSMA ensures that an agent remains
silent when one of its neighbors is broadcasting. However,
agents in the second neighborhood1(hereinafter referred to
as 2-hop neighbors) of the broadcasting agent cannot sense
this traffic and can choose to broadcast at the same time,

1Second neighborhood of a node is the vertex-induced subgraph of all
nodes that are at distance two (also known as 2-hop) from the current node.

leading to message collision at a common neighbor. This is
commonly referred to as the hidden node problem (depicted
in Fig. 2 for only 3 agents). Hidden node problem results in
packet loss; slowing down the conflict resolution process of a
consensus algorithm such as CBBA. Although handshaking
techniques can reduce the hidden node problem [53], they
could introduce the latency in the ad-hoc network which is
not desirable in time-critical task allocation problems such as
search and rescue.
Bandwidth limitation is another constraint encountered

when implementing a message-intensive algorithm like
CBBA. Whenever an agent takes control of the medium for
broadcasting, its neighbors have to wait. Under a random
scheduling mechanism for broadcasting offered in CSMA,
agents with no useful information can take control of the
medium fairly often, blocking its neighbors with potentially
useful information leading to a slower conflict resolution
process.

IV. PROPOSED APPROACH
The main contribution of this work is to modify CSMA by
adding a new communication policy to address the com-
munication limitations, i.e. limited bandwidth and message
collision. As explained later, we design a RL framework to
learn the mentioned communication policy that maximizes
the task allocation reward (see Fig. 1b, green blocks are added
as new components to the original CSMA). This section
discusses different components of the communication policy
namely, censoring and scheduling along with the associated
features.
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FIGURE 3. Different communication graph cases. Since agents C and D
are connected in (b), only one of them can be scheduled to broadcast at
the same time as agent A. This makes the network density experienced by
agent A in (a) different from that in (b), even though agent A has 2 nodes
in its 2-hop neighborhood for both. However, network density for A in
(b) and (c) are similar. (d) shows agent A in a larger communication graph
with its 2-hop neighbors shown in green. These green nodes along with
the edges between them (shown in thick lines) constitute the second
neighborhood of A. {G, D, I}, {G, H}, {E, H}, {E, I} and {F, D, I} are the five
possible maximal independent sets of the second neighborhood of A.

A. CENSORING BASED ON LOCAL COMMUNICATION
GRAPH DENSITY
The idea of censoring messages to address communication
constraints have been explored in previous works. Ref. [38]
uses censoring in distributed sensing problem. Inspired by
this, we alter vanilla CSMA to allow for self-censoring of
agents. Under this modified version of CSMA, agents choose
to censor themselves with a probability p when they have an
opportunity to broadcast. Whenever an agent censors itself,
it effectively gives an opportunity for other agents in its 2-hop
(or hidden nodes) to broadcast; reducing the likelihood of
message collision. Since an agent cannot detect when its
hidden node broadcasts, this censoring has to be random.
We hypothesize that random self-censoring of agents with
optimal censoring probability should improve the overall
throughput of the network by reducing message collisions
thereby improving the conflict resolution process of CBBA.
Fig. 1b shows the modified CSMA protocol with censoring
probability p.
Intuition suggests that optimal censoring probability must

depend on the crowdedness (or density) of an agent’s local
communication graph. Furthermore, it is clear that an agent
with an empty second neighborhood does not need to censor
itself as there are no hidden nodes. However, an agent with ten
2-hop neighbors must censor itself with higher probability to
give a fair chance at broadcasting for each of its ten potential
hidden nodes. One way to represent this density is to simply
count the 2-hop nodes, but there is a caveat to this approach.
Not all 2-hop nodes can behave as hidden nodes at the same
time.

Consider, agent A in the first three cases shown in Fig. 3.
In Fig. 3a and Fig. 3b, there are two agents (C, D) in the

2-hop neighborhood. However, when running CSMA, only
one agent (either C or D) can be scheduled to broadcast at
the same time as agent A in case 3b. This is due to the fact
that running CSMA ensures that neighbors are not scheduled
at the same time. Therefore, the network density feature of
agent A in Fig. 3b and Fig. 3c should be the same and different
from that of agent A in Fig. 3a. Any network density feature
must account for this redundancy in counting that occurs due
to edges between 2-hop nodes.

To take into account this redundancy and inspired by [54],
we consider maximal independent set of the second neighbor-
hood of the agent, instead of its hidden nodes. In fact, each
maximal independent set of an agent in the second hop neigh-
borhood represents a distinct combination of hidden nodes.
Thus, the expected size of an agent’s maximal independent
set would be a better measure of the local communication
graph density. Assuming the graph is connected, maximal
independent sets can be found by listing all the maximal
cliques of its complementary graph, which is a well-studied
problem in graph theory [55]. We use the Bron-Kerbosch
(BK) algorithm [55], which is a recursive backtracking
algorithm, to list all maximal cliques of the complementary
second neighborhood. The worst-case running time for BK
algorithm on a graph with n vertices is O(3n/3). Although
this theoretical bound is non-polynomial, experience has
shown that it is much faster in practice [56]. Furthermore,
the probability of each of these maximal independent sets
cannot be computed unless the entire graph is known locally,
which would involve huge communication cost for larger
graphs. Therefore, we use average cardinality of maximal
independent sets as a measure of the local graph density
referred asBK feature. Let the second neighborhood of agent i
be a graphGi with nmaximal independent sets {m1, . . . ,mn},
then the BK feature is defined as:

αi =
1
n

n∑
j=1

|mj|. (2)

Fig. 3d shows an example where {G, D, I}, {G, H}, {E, H},
{E, I} and {F, D, I} are the five possible maximal independent
sets of second neighborhood of agent A. Each set represents
a combination of agents that can be scheduled at the same
time as agent A under CSMA. The BK feature of agent
A is 2.4. Each message sent from agent j and received by
agent i contains two sets of information: bidding information
of agent j and j’s neighbor list Nj, the latter is essentially
used to construct the second neighborhood graph locally at
the start of CBBA as shown in lines 5 - 7 of Algorithm 1.
In Section V-C1, we show that the BK feature can be used to
efficiently censor agents when compared to a simple 2-hop
count.

B. SCHEDULING BASED ON VALUE OF MESSAGE
In decentralized algorithms such as CBBA, it is likely that
only a few agents will have valuable information at any
given time. Vanilla CSMA algorithm treats all the agents
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with the same priority limiting bandwidth for other agents
with potentially important messages to broadcast. Priority
based scheduling in CSMA has been explored in previous
work [57], [58] by setting a lower contention window size
for agents with higher priority. In our work, we prioritize
agents based on the value of their message towards the team’s
final goal of conflict resolution. We now focus on defining
a value of message (VoM) metric for a message in CBBA.
A key challenge here is to keep this metric local, that is no
additional communication must happen for computing this
metric, as it might defeat the original purpose of limiting
communication. Let mit denote the message sent by agent
i at time t . In ideal scenario where there are no message
collisions, this message is received by each of its neighbors
and is used in the conflict resolution process based on the
rules described in conflict resolution phase of CBBA. The
intuition here is that if message mit from agent i does not
alter the winning bids list, y, of any of its neighbors, it is
uninformative and its value must be 0. If we denote, the
new winning bid list of a neighboring agent j after resolving

conflicts using message mit as y
mit
j and the neighborhood of

agent i asNi, then the value ofmessagemit could bewritten as,

β it = |Ni|
−1
∑
j∈Ni

‖sign{ym
i
t

j − yj}‖1. (3)

However, agent i does not have access to the current winning
bid list of any of its neighbors, and any means of obtaining
this would incurmore communication cost. Therefore, we use
the most recent message received from agent j as surrogate
to yj. We denote this recent message as ȳj. By making this
temporal approximation, we are able to estimate value of a
message locally without additional communication. With this
change, (3) can be approximated as,

β it ≈ |Ni|
−1
∑
j∈Ni

∥∥∥∥sign{ȳmitj − ȳj}
∥∥∥∥
1
. (4)

To illustrate the effectiveness of our VoM feature in
capturing the true value of a message, we investigate a
simple experiment. We consider agents in an ideal commu-
nication environment without any message collisions and
implement three different scheduling algorithms - random
scheduling, scheduling based on VoM defined in (3) and cen-
tralized scheduling based on (4). Under centralized schedul-
ing, agents have access to the state vectors of their neighbors
and hence can make an exact prediction of the value of a
message. Although, centralized scheduling is unrealistic, it is
the theoretical upper bound on how fast the conflict resolution
process could be. Fig. 4 shows that VoM-based schedul-
ing, with no additional communication, outperforms random
scheduling and is comparable to centralized scheduling. This
feature is computed at every timestep of CBBA, as shown in
line 11 of Alg. 1 and Section V-C2 shows how this metric is
used by agents to increase their priority (in a decentralized
manner) when running CSMA, resulting in faster conflict
resolution process.

FIGURE 4. VoM-based scheduling. Under centralized scheduling (ideal
unrealistic case), agents have access to state vectors of their neighbors.
VoM-based scheduling (green), without additional communication, can
schedule as effectively as centralized scheduling (red) and outperform
random scheduling (black) found in vanilla CSMA.

Algorithm 1 Learning to Censor and Schedule
1: Initialize actor (φ), critic (θ ) parameters, replay buffer D
2: for N̂ episodes do
3: Initialize task allocation problem
4: for each agent i do
5: Broadcast neighbor list by 3-hop communication
6: Reconstruct second neighborhood
7: Calculate local network density αi using Eq. 2
8: end for
9: for t time steps do

10: Run Task selection phase of CBBA [1]
11: Calculate value of message β it using Eq. 4
12: Set CSMA parameters as ait = π (o

i
t )+N (0, σ 2)

13: Broadcast messages over the network
14: Run conflict resolution phase of CBBA [1]
15: Observe reward r ti and next observation o

i
t+1

16: Store
(
ot , at , rt , ot+1

)
in replay buffer D

17: end for
18: for each gradient step do
19: Sample minibatch

(
oj, aj, r j, o′j

)
from buffer D

20: Update φ and θ based on MADDPG [59]
21: end for
22: end for

C. LEARNING TO CENSOR AND SCHEDULE
We are interested in finding an optimal, decentralized

cooperative policy that uses the above features to speed up
conflict resolution process. This decision making problem
can be formalized as a Multiagent Markov Decision Process
(MMDP) [60] which is a tuple,

M =
〈
S, I, {Ui}i∈I , π,R, T

〉
where S, I are the set of states and agents. In decentralized
setting, each agent i receives an observation oit that is corre-
lated with the current state of the team st . Agent i performs
an action ait ∈ Ui, sampled according to the policy π i(oit ;φ

i)
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parameterized by φi. The joint action at = {a1t , . . . , a
n
t }

transitions the current state st to next state st+1 according to
transition function T (st+1|st , at ) and each agent i makes a
new observation oit+1 correlated with the new state st+1. The
team receives a joint reward rt = R(st , at ) defined in Eq.1.
The goal is to find policy π i,∀i ∈ I such that the expected
joint reward is maximized.

In environments with complex dynamics (T ,R) like ours,
model-free reinforcement learning frameworks which treat
the environment as a black box are often used. Actor-critic
algorithms, a class of model-free RL algorithms approx-
imate expected reward by learning an action-value critic,
Qi(oit , a

i
t ; θ

i). In our work, we use MADDPG [59], a pop-
ular multiagent actor-critic algorithm to learn the opti-
mal policy. MADDPG uses a centralized critic to address
non-stationarity issues inherent to multiagent RL settings.
The actor or the learnt policy uses only local observations;
allowing for decentralized evaluation. Additionally, we allow
parameter sharing for both actor and critic functions across
the team due to homogeneous nature of agents in our problem.
This simplification speeds up the training process and allows
policy to generalize across different team sizes.

Fig. 5 illustrates the training process. In our case, the obser-
vation consists of three features, namely local communication
graph density αit , value of message β it . and the normalized
CBBA timestep t̄ . The action space consists of censoring
probability pti and contention window size cwti :

oti = [αit , β
i
t , t̄], ati ∈ [0, 1]2,

pti = ati [0], cwti =
⌈
16ati [1]

⌉
,

where d.e denotes the ceiling function and a[i] denotes the ith
dimension of a. Since the communication graph for a given
episode is fixed, αit is constant for all t within an episode. The
change in CBBA reward from the last time step is used as the
common reward (r ti ) for learning. Gaussian noise (σ = 0.1)
is added to the action during learning to enable exploration
of the policy space as shown in line 12 of Algorithm 1. The
algorithm for learning optimal cooperative communication
policy is summarized in Algorithm 1.

V. RESULTS
In this section, we evaluate the performance of the proposed
algorithm (CA-CBBA) against different baselines. Applica-
tion of the algorithm to two different scenarios is presented.
Additionally, we perform ablation study to understand the
contribution of each of the two components of the algorithm -
censoring and scheduling.We also examine the generalizabil-
ity of the learned communication policy to teams of different
sizes allocating different task numbers.

A. IMPLEMENTATION DETAILS
The simulation environment consists of multiple agents per-
forming decentralized task allocation in an in-house network
simulator running UDP with IEEE 802.11b broadcast in ad-
hoc settings. Agents use a modified version of CSMA/CA

scheme shown in Fig. 1b with parameters defined by the
learned communication policy.

1) BASELINE
In addition to CA-CBBA, we compare our algorithm to four
other baselines defined below:

1) CBBA-Ideal - This consists of agents running CBBA
without any communication constraints. All the agents
in the team broadcast their messages to their neighbors
and message collisions are ignored. This is an ideal
scenario and represents the upper bound on the per-
formance of any communication-aware task allocation
algorithm.

2) CBBA-Baseline - This consists of agents running
CBBA under communication constraints. Agents use
CSMA to access the shared medium and broadcast
their messages to neighbors. The convergence rate
of CBBA-Baseline is limited by communication con-
straints.

3) ACBBA - Asynchronous version of CBBA presented
in [3] which allows the agents independently rebroad-
casting or refuse to broadcasting their message given
the received messages from other agents. ACBBA
shows more robust performance compared to CBBA in
environments with imperfect communications.

4) MCDGA - In this approach agents either unicast (to a
specific agent) or broadcast (to neighbors) their mes-
sages based on the local communication rules defined
by the algorithm. We use a handshaking mechanism to
unicast messages and hence this algorithm doesn’t suf-
fer from message interference like the other baselines
and CA-CBBA. The downside of such a setup is that it
takes longer to disseminate information.

2) TRAINING SETUP AND EVALUATION METRICS
We trained our algorithm on 6, 10 and 20 agent teams. In each
training episode, agents are initialized in an arbitrary con-
nected communication graph and perform specified rounds of
CBBA. The experience tuple which consists of observation,
action and reward is stored in a memory buffer. Batches
of size 128 sampled from this replay buffer D are used
to perform gradient updates on the communication policy
represented using a feed forward neural network of depth
2 and width 64. In total, the actor and critic converge after
15, 000 and 20, 000 episodes for 6 and 10 agents case respec-
tively. The learned policies were evaluated for 200 episodes
for each of the following experiments. The average and vari-
ance of the following evaluation metrics are reported.

1) Normalized CBBA reward - Ratio of the task alloca-
tion reward of the entire team obtained at the end of
running CBBA (or MCDGA) to the reward obtained
from Centralized Sequential Greedy Algorithm (SGA).

2) Fraction of conflicts - Ratio of number of tasks that
are allocated to multiple agents (conflicts) to the total
number of tasks.
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FIGURE 5. RL training process. Shown here is policy of a single agent parameterized by
a neural network. The policy learns to control CSMA parameters - censoring probability
and contention window size based on the input features described in Sections IV-A
and IV-B.

FIGURE 6. Fraction of conflicts vs rounds of communication in task
allocation, for a team of 10 agents. The shaded region represents the
standard deviation for each algorithm obtained from 100 different runs.
CBBA-Ideal has the fastest conflict resolution but it represents an
unrealistic scenario without communication constraints. Among the
realistic algorithms, CA-CBBA and CBBA-Baseline and ACBBA use
broadcasting setup while MCDGA uses a secure unicasting mode for
communication. CA-CBBA performs better than the rest as it is able to
efficiently censor and schedule agents to reduce message interference
and use its bandwidth efficiently. Although, MCDGA does not suffer from
message interference, it has a slower conflict resolution rate compared to
CA-CBBA as unicasting is inefficient in disseminating information in a
consensus setup.

3) Convergence time - Time taken for CBBA to converge
to a conflict free allocation. This metric is defined in
terms of rounds of CBBA or rounds of communication.
Note: Every round of CBBA includes bundle building
phase and consensus phases in which agents go through
one round of communication.

4) Fraction of Unassigned Tasks - The fraction of unas-
signed tasks, i.e. the ratio of unassigned tasks to the
total number of tasks, is an evaluation metric used in
time-sensitive applications.

B. CONVERGENCE ANALYSIS
In this subsection, we compare the performance of CA-CBBA
against different baselines described above.

1) CONFLICT RESOLUTION
Conflict resolution is an important aspect of decentral-
ized task allocation. Communication constraints hinder the

message passing and result in slower conflict resolution.
Fig. 6 compares conflict resolution ability of CA-CBBA and
other baselines by plotting the fraction of conflicts across the
team against rounds of communication. Since, CBBA-Ideal
ignores communication constraints it is unrealistic. How-
ever, its conflict resolution curve acts as the upper bound
on performance for other algorithms. CBBA-Baseline is the
vanilla application of CBBA with realistic communication
constraints and hence has the slowest conflict resolution rate.

MCDGA and CA-CBBA (our algorithm) take two dif-
ferent approaches to resolve communication constraints.
MCDGA prunes unwanted broadcasting of messages in orig-
inal CBBA by modifying the message. This modification
forces MCDGA to unicast messages in certain cases. The
advantage of this approach is that messages can be trans-
mitted reliably. However, unicasting is an inefficient form
of communication for consensus algorithms as information
is disseminated slower. ACBBA considers rebroadcasting
somemessages or censoring to broadcast, therefore it requires
smaller number of messages compared to CBBA, but it
suffers from hidden node problems. On the other hand,
CA-CBBA uses broadcasting but deals with the communi-
cation constraints by censoring and scheduling agents based
on the Value of their Message. This allows CA-CBBA to
resolve conflicts faster than other baselines that operate under
communication constraints.

2) THE EFFECT OF COMMUNICATION GRAPH ON
CONVERGENCE TIME
Communication constraints do not impact all the CBBA runs
equally. CBBA runs with very less connectivity (or larger
number of hidden nodes) suffer from message interference.
Fig. 7a shows the convergence time of CBBA-Baseline for
different runs where each run is characterized by the aver-
age BK feature of the nodes, as an indicative of the net-
work hidden nodes density, and second smallest eigenvalue
of Graph Laplacian of the corresponding communication
graph, as the indicative of graph connectivity [61]. It can
be seen that CBBA-Baseline runs that are close to the top
left portion of the graph are timed out (i.e. it takes longer
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FIGURE 7. Convergence time of CBBA and CA-CBBA for 10 agent teams.
Each point represent one of the 200 different runs made on a random
communication graph. Two features for each communication graph - the
average BK feature value of the nodes and the second smallest
Eigenvalue of graph Laplacian are shown. It can be seen that most runs in
the upper-left part of Fig. 7a gets timed out as messages in these runs are
not broadcasted reliably due to communication constraints. CA-CBBA
alleviates this issue.

than 4000 rounds to converge) compared to the ones on the
bottom right. CA-CBBA is able to alleviate communication
issues in such CBBA runs by efficiently censoring as evi-
dent in Fig. 7b, resulting in converging faster compared to
CBBA-baseline. Note that the darker circles are associated
with slower convergence.

3) THE EFFECT OF TASK NUMBER ON CONVERGENCE TIME
Fig. 8 shows the box plot of the convergence time of
CA-CBBA and different baselines for different task numbers.
It can be seen that convergence time for all runs of CA-CBBA
is better than 75 percentile runs of CBBA-Baseline. Conver-
gence times for a very few runs of CBBA-Baseline is less than
CA-CBBA. These correspond to task allocation runs with
easier (less prone to message interference) communication
graphs such as the ones found in bottom right of Fig. 7a.
Furthermore, CA-CBBA is able to consistently outperform
CBBA-Baseline for a wide range of task numbers even
though the communication policy was trained on a specific
task number of 100.

C. ABLATION STUDY
An ablation study is performed to show the contribution of
censoring and scheduling to the performance of CA-CBBA.

FIGURE 8. Convergence time (in rounds of communication) vs Number of
tasks for a 6 agent team. CA-CBBA consistently outperforms
CBBA-Baseline on experiments with wide range of task number even
though the policy was trained on a specific task number of 100. It should
be noted that CA-CBBA and CBBA-Baseline box plots overlap due to the
presence of graphs such as fully-connected and long-chain that are
inherently easier and harder to run task allocation on and must not be
interpreted to mean that the results are not statistically significant. When
controlled for such variations in communication graph, CA-CBBA
outperforms other baselines as shown in Fig. 7.

1) REDUCED MESSAGE COLLISIONS DUE TO EFFICIENT
CENSORING
We train two altered versions of the algorithm. The first
one uses 2-hop count for local communication graph density
while the second one uses Bron-Kerbosch feature. Both these
versions do not use Value of Message and instead, use the
default random scheduling found in Vanilla CSMA. This
is done to study only the effect of censoring in isolation.
As discussed in Section IV-A, 2-hop count cannot capture
the local network density across multiple communication
graphs as effectively as Bron-Kerbosch feature. Hence, the
policy learned using 2-hop count cannot censor agents effi-
ciently to reduce message collisions. This is evident from
the slower conflict resolution for 2-hop count based censor-
ing (orange) compared to BK feature based censoring (green)
in Fig. 9a and Fig. 9b. Furthermore, the claim is supported by
calculating average throughput shown in Table 1. The average
throughput (successful message transmissions) is higher for
BK feature case compared to 2-hop count as a result of effi-
cient censoring. Both these censoring methods outperform
throughput in baseline case.

2) FASTER CONFLICT RESOLUTION DUE TO VoM-BASED
SCHEDULING
We have shown censoring of messages increases throughput
by addressing the hidden node problem. However, band-
width limitation in constrained communication, cannot be
addressed by censoring. This section introduces a new com-
ponent for efficient scheduling of communication to address
the bandwidth limit. This is motivated by this fact that the
random scheduling causes agents with important messages
to wait until other agents finish their transmission, slowing
down the conflict resolution process. This is because random
scheduling is inherently blind to the value of an agent’s
message towards the final goal of the team. We address this
issue in our algorithm by prioritized scheduling based on
the value of message. Fig. 9a and Fig. 9b show that the
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FIGURE 9. Variations of CA-CBBA that only censor based on 2-hop
count (orange) and BK feature (green) perform better than baseline (red).
BK feature censors agents efficiently compared to 2-hop count as it can
express local graph density better. CA-CBBA (blue) performs the best as a
result of efficient censoring and prioritized scheduling that allows
informative agents to use the bandwidth effectively.

conflict resolution process for our proposed algorithm (BK
feature-based censoring and VoM-based scheduling) (blue)
is faster compared to the two learning versions that use ran-
dom scheduling and the baseline (red). Furthermore, Table 1
shows that throughput for BK feature based censoring with
2-hop count based scheduling (green) and BK feature based
censoring with VoM based scheduling (blue) are the same
even though they show much different conflict resolution
curves in Fig. 9a and Fig. 9b. This shows that both algorithms
censor agents equally efficiently to allow higher throughput,
but the information content of the sent messages are higher on
average in our VoM-based approach, which leads to a faster
conflict resolution process.

D. COMMUNICATION POLICY GENERALIZES TO
DIFFERENT TEAM SIZES
Since the communication effects of message collision and
bandwidth limitations are local, it should be possible to learn
a policy that can generalize to any team size. By construct-
ing features that are local (and depend only on neighboring
agents) and by sharing parameters of the policy, we are,
in fact, able to learn optimal policy that generalizes well to
larger team sizes. Fig. 10 shows the policy learned using
6 agents (solid blue) and a policy learned with 10 agents

(dashed blue) along with the case where there is no com-
munication constraints during CBBA execution and we call
it ideal case (black). Note that in this graph the y-axis is
the task allocation reward normalized to ideal case (the
maximum possible reward), which means the maximum
value of y-axisis one. We expect the task allocation reward
for all algorithms increases as CBBA is executed (x-axis
shows the round of communications in CBBA). However,
the convergence rate the reward could be different for differ-
ent baselines. The graph shows learned communication pol-
icy improves the convergence rate of task allocation reward
compared to the no-learned policy. The ideal curve cannot
be attained under any real communication constraints, so it
provides a (possibly very optimistic) upper bound on per-
formance (with the no learning approach providing a lower
bound). The key point here is that, when evaluated on a
10-agent team, the 6-agent policy (solid blue) matches quite
closely to the performance of the 10 agent policy, showing
that the learned result generalizes well to a larger team.
Fig. 10b shows that CA-CBBA is able to generalize to
20 agents, when the policy is trained for 10 agents. For larger
networks (here 20 agents) non-stationarity dominates and the
MADDPG algorithm fails to learn. However, we can evaluate
the performance of the 6-agent and 10-agent policies, which
again show similar conflict resolution curves in those settings
and out-perform the no learning baseline. These results sug-
gest that the policy learned from smaller teams can be used
on larger teams for which it is hard/impossible to learn the
optimal policy.

E. VALIDATION IN A HIGH-FIDELITY NETWORK
SIMULATOR
We used a simple in-house simulator written in Python for
training the policy because it is easier to interface with the
DRL frameworks used for MARL. This simulator models
key aspects of realistic communication networks, such as
message collisions and bandwidth interference. However, it is
also conservative in its treatment of communication con-
straints. For example, message delivery in realistic networks
is not a deterministic process with a cut-off distance (as
modelled by the disc model used in the Simple simulator). It is
a stochastic process with the probability of delivery propor-
tional to Bit Error Rate (BER) which in turn depends on the
Signal to InterferenceNoise Ratio (SINR) at the receiver. This
would result in nodes outside the disc to receive messages
occasionally.

This subsection validates our algorithm on a realistic net-
work simulator based on NetSim [62] that considers a packet
erasure channel and models the probability of delivery of a
packet using Bit Error Rate (BER).We call this theBER simu-
lator, and the key equations are as follows. Let the probability
of delivery of a message broadcast by agent i at agent j be
denoted as βij and let bij be the BER of the received message
of size N

βij = 1− (1− bij)N . (5)
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TABLE 1. Increased throughput due to efficient censoring. Bron-Kerbosch (BK) feature captures the local network density better than a simple 2-hop
count. Therefore, the policy learned using Bron-Kerbosch feature results in reduced message collisions and higher throughput.

FIGURE 10. Generalization of learned policies to different team sizes.
Fig. 10a shows that the policy learned using 6-agent team (solid blue)
performs as good as 10-agent policy (dashed blue). Fig. 10b policy
learned with smaller teams perform reasonably, outperforming the
baseline (red) for larger team sizes (20 agents here) where it can be hard
for MADDPG to learn.

Under QPSK modulation, bij can be related to the power of
the message received Pij and the power of the interference
noise Pn as,

bij = erfc

(√
Pij
Pn

)
, (6)

where erfc(·) is the complementary error function and Pn
includes thermal noise and interference from hidden nodes in
the case of UDP communication. Furthermore, if the trans-
mission power of agent i is Pi,

Pij = Pi − Pl, (7)

where Pl is the loss in power due to different physical
phenomenon such as path loss and fading loss which is a
function of the distance between transmitter and receiver
among other parameters. In the BER simulator, we use
Hata-Okumura model [63], a standard loss model for broad-
cast in dense environments. In BER simulator, the probability
of two messages colliding (and getting rejected) depends

on the interval of overlap between the messages. Under the
simple simulator, a harsher condition that ignored both the
messages completely even if this interval is very small was
imposed. The evaluation results of our algorithm for 6 and
10 agent teams on both the Simple and BER simulator is
shown in Table 2. Results demonstrate our learning frame-
work is able to generalize to the complex and realistic net-
work simulator further supporting the case for the features
crafted in Section IV. Furthermore, it also shows that the
modified simulator is less conservative in its predictions com-
pared to the simple simulator.

F. APPLICATIONS
We have evaluated our algorithm and other baselines in two
different applications of task allocations: search and rescue
and task scheduling for time-limited tasks.

1) TIME-SENSITIVE TASK ALLOCATION: SEARCH AND
RESCUE
In many applications, tasks are time-sensitive, i.e, they have
a higher reward if done earlier. For instance, in a search and
rescue scenario, a group of agents (vehicles) should move
to the assigned targets and provide medical supplies, food,
or provide transportation as soon as possible. In these cases,
the tasks that are time-critical must be serviced earlier. This
can be accounted for by using a time-discounted reward [1],
where the total reward of servicing the tasks assigned to
agent i is

Sψii =
Nt∑
j=1

λτ
j
i (ψi)c̄j, (8)

λ ∈ (0, 1] is a discount factor and τ ij (ψi) is the time when
agent i arrives at task j along the allocated path ψi. Also
c̄j is the static reward considered for task j and typically
implies the task deadline dj. We use the exponential function
to compute the task reward

c̄j = e−dj . (9)

Assume that dj is the distance traveled by agent i to arrive at
target j, each vehicle has speed vi, and target j is serviced in
the order of ζj ∈ {1, 2, . . . ,Lt }. We further assume that the
time required for servicing each target is δ, then τ ij (ψi) is

τ ij (ψi) = djvi−1 + (ζj − 1)δ (10)

We consider a search and rescue experiment where the
vehicles start from a fixed location and the tasks are ran-
domly located in the environment (see Fig. 12). For this
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TABLE 2. Normalized task allocation reward after 50 rounds of CBBA in Simple and BER simulator. The policy is able to improve performance in both
simulators, showing that features defined in section IV are general enough to capture the fundamental constraints posed by real communication
networks.

FIGURE 11. Different graph typologies used for search and rescue
experiment.

FIGURE 12. Search and rescue experiments with 6 vehicles (blue
triangles), twenty survivors are located randomly (red circles), and are
served in the order of their location in the assigned path. The task
assignment is stopped after 175 rounds of communications and then the
agents are served the tasks according to the order in the assigned path.
While CA-CBBA and ideal case achieves a conflict-free task assignment in
(a), original CBBA that does not consider the communication constraints
does not converge and two of the tasks are conflicted between two
agents (shown in black circles).

analysis we just consider the initial task allocation problem
using an imposed network of the types shown in Fig. 11)
(plus a random one). The network is fixed during this initial
task allocation. The results in Table 3 show that MCDGA
performs the best for a star-shaped topology (requires fewer
messages in Unicast communication), but is the worst for a
chain graph (presents networks with longest diameter that
inherently requires more communication messages in an uni-
cast setting). On the other hand, CA-CBBA outperforms
the other algorithms for most topologies (fully connected,
triangle, chain, and random cases).

2) TIME SCHEDULING OF MULTIPLE TASKS
In this experiment agents should service multiple tasks, but
the tasks have to be executed in the order of their deadlines to
minimize the number ofmissing tasks. To compute the reward

FIGURE 13. Time scheduling for the task T 0 to T 14 is shown when
CA-CBBA (left) or MCDGA (right) is applied for task scheduling, for five
agents in a triangle communication topology. Only tasks deadlines lying
in the current time window is shown by dashed lines, the tasks which are
finished after the deadline are shown in red and tasks that meet the
deadline is marked by green.

function for this task-assignment problem, we use Eq. 8 with
two modifications:

1) A path indicates the order of accomplishing the tasks.
When a task is accomplished, the agent starts next task
in the path immediately. Thismeans there is no physical
distance between the tasks.

2) Each task has a specific level of difficulty, which
implies the time required for accomplishing task would
be different across different tasks. The time required to
accomplish the task j by agent i is computed as:

δij = ljγ i (11)

where lj refers to the level of difficulty of task j, (i.e.,
more difficult task has higher values of lj). Also γ i
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TABLE 3. Search and rescue experiments with Nu vehicles with different velocities in the range of [0.5,5]m/s, the initial location of the vehicles are fixed
in [−10,10] × [−10,10] (see Fig. 12 for 6 agents configurations), but the Nt tasks are located randomly in [−10,10] × [−10,10]. Each agent can serve up to
Lt tasks. The performance is reported in terms of the fraction of conflicted task and fraction of number of unassigned tasks (lower is better) for the
CBBA [1], ACBBA [3], MCDGA [2], and CA-CBBA (our approach). As the number of agents increases, we expect longer time for the convergences due to
communication constraints, but Ta is defined as the time the task assignment is stopped.

indicates the time the agent i requires to finish the task
with level of difficulty equal to 1. Using this definition,
Eq.10 is rewritten as

τ ij (ψi) =
∑

k∈bi,ok<oj

δik (12)

where bi is the set of task indices in agent i’s bundle
which are serviced before task j.

As before, we analyze the task allocation and execu-
tion process separately. First tasks are assigned between
agents in a designated time (task assignment step). Then,
each agent accomplishes the tasks in the assigned order
(task accomplishment step). Allocating an appropriate time
for task assignment is challenging as the convergence time
for task assignment would be different for different task allo-
cation algorithms. Furthermore, the task assignment is decen-
tralized and the exact convergence time could not be retrieved
without global knowledge. To overcome these issues, we use
Monte Carlo sampling to estimate the required time for con-
verging. We have run baselines for 100 trials and measure
the average convergence time for each algorithm, i.e. when
the task assignment is conflict-free and all the tasks are
allocated. In this example we assume agents communicate
via a triangle-shaped graph (see Fig. 11). The result from
this Monte-Carlo sampling suggests the required 250, 450,
and 1000 rounds of communication (roc) for the convergence
of CA-CBBA, MCDGA, and CBBA-baseline respectively.
We consider this required time for task assignment step. So,
the accomplish task step starts in different times for each algo-
rithm. We unify the time scales in two steps, such that task

deadlines are randomly selected between 300 to 900 (roc).
The agents speeds are randomly chosen from γ ∈ [1, 10] and
the level of difficulty for the tasks is chosen from l ∈ [1, 4].

Fig. 13 shows the results of a task assignment of 15 tasks
between 5 agents (each has the capacity of accomplishing
three tasks). As the results show, CA-CBBA was able to
finish all the tasks before their deadlines (T0 has the earliest
deadline at 339 rounds of communication and T3 has the
latest deadline of 876 rounds of communication). This result
also confirms the final task assignment bundles for both
MCDGA and CA-CBBA are the same, which is as expected
because they are basically trying to optimize the same reward
function, which prioritizes the tasks based on their deadlines.2

This example shows MCDGA requires longer time to con-
verge, which leads to miss five tasks. Note the task T5 started
before its deadline but it is not done by its deadline and
considered as a missed task. In this example, CBBA-baseline
requires 900 rounds of the communication to converge in
average, which means it misses all the task’s deadlines.

VI. CONCLUSION AND FUTURE WORK
We have presented CA-CBBA, a new learning-based algo-
rithm for decentralized task allocation in networked agents
with communication constraints. Two local features of Bron-
Kerbosch or BK feature and the value of message are used
to learn a decentralized communication policy that adaptively
allocates communication resources across the team to achieve

2In this example the order of deadlines was: T0 < T9 < T10 < T4 <
T7 < T14 < T11 < T1 < T6 < T5 < T12 < T13 < T2 < T8 < T3.
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efficient message passing. The results show that CA-CBBA
improves throughput by ∼15% and the convergence time by
∼10x compared to baseline CBBA in adhoc networks, while
the learned policy can be generalized to different team sizes
and different task numbers beyond the size of the training set.
In addition, we have shown CA-CBBA outperforms the other
baselines in time-sensitive applications including search and
rescue and task scheduling inmost of the scenarios. This work
is also a first step towards a general goal of co-designing mul-
tiagent algorithms and communication protocol to improve
real-life performance of multiagent algorithms such as decen-
tralized task allocation. In future, we would like to extend this
framework to a general multiagent algorithm by incorporat-
ing feature discovery process as part of the RL training loop.
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