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Abstract

Intention recognition of pedestrians is crucial to safe and reliable working of1

autonomous vehicles, when serving as, for instance, indoor service robots or2

self-driving cars in busy urban scenes. Previously, Chen et al. [2016] combined3

Markovian-based and clustering-based approaches to learn motion primitives and4

subsequently predict pedestrian trajectories by modeling the transition between5

learned primitives as a Gaussian Process (GP). This work further develops their ap-6

proach by incorporating semantic features from the environment (relative distance7

to curbside and status of pedestrian traffic lights) for more confident prediction of8

pedestrian trajectories at intersections. Adding the environmental context, when9

available, not only makes prediction more robust but can also provide increased10

flexibility of prediction in new environments. We test our algorithm on real data.11

The results show 26% improvement in prediction accuracy as compared to previous12

work, on incorporation of new features.13

1 Introduction14

Recent advances in sensor technologies and computing power have led to a surge in research on15

autonomous driving to improve road safety (Fagnant and Kockelman [2015], Bagloee et al. [2016]),16

reduce traffic congestion and improve vehicle utilization. For safe and efficient autonomous driving in17

complex urban environments, a self-driving vehicle must be able to interact with other moving objects,18

including pedestrians, cyclists, and, of course, cars. Pedestrian trajectory prediction is challenging as19

compared to that of other cars and cyclists because of the absence of a regular flow, such as driving20

within lanes and staying within road boundaries, that result from a fairly uniform set of predefined21

“rules of the road” for cars (and to some extent cyclists). The complexity is increased further when22

the urban environment includes pedestrian traffic lights or tightly packed sidewalks with numerous23

pedestrian interactions.24

Several papers have been written on short-term prediction of human motion (Kooij et al. [2014],25

Bissacco and Soatto [2009]), but understanding goals or intent is needed to plan for longer timescales26

(Karasev et al. [2016], Alahi et al. [2016]). Previous work has focused on two main approaches27

(Lefèvre et al. [2014]) to modeling maneuvers of dynamic agents, including pedestrians: 1) prototype28

trajectories-based and 2) maneuver intention estimation-based. In general, prototype trajectories-29

based/clustering-based approaches are more robust to measurement noise when compared to maneuver30

intention estimation-based approaches, which are mostly Markovian (Makris and Ellis [2002],31

Vasquez et al. [2009]) and rely on the current state only for prediction. However, the prototype32

trajectories-based approaches can be computationally quite expensive (Rasmussen and Ghahramani33

[2002], Ferguson et al. [2015]) and hence slow in detecting changes in pedestrian intent. They are34

also susceptible to issues like partial trajectories in the training dataset being grouped into a cluster35

and learned as a trajectory prototype.36
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Chen et al. [2016] use a combination of prototype trajectory-based and Markovian-based methods to37

inherit the benefits of both techniques in developing a dictionary learning algorithm, called augmented38

semi nonnegative sparse coding (ASNSC). Learning motion primitives instead of complete prototype39

trajectories addresses partial observability of trajectories caused by occlusions or a limited field of40

view of on-board perception sensors. ASNSC creates a set of feasible trajectories as its prediction that41

are learned based on solely the spatial features of the training dataset (absolute x and y position and42

orientation of pedestrians), independent of the environment context that may influence a pedestrian’s43

intent.44

Figure 1: Example intersection scenario. Dotted green
line denotes a rectangular approximation to the curb-
side in view. Orange arrows denote relative distance
of a pedestrian from the two curbsides, which can indi-
cate pedestrian intention. Pedestrian traffic light status
is highlighted in orange, which influences pedestrian
movement.

The accuracy of these predictions could be im-45

proved by adding semantic features from the46

environment in the learning process. Incorpo-47

rating the environmental context can also pro-48

vide the flexibility of application of the learned49

model to prediction in new, but similar envi-50

ronments, unexplored earlier, which is in gen-51

eral difficult to achieve with clustering-based52

approaches (Lefèvre et al. [2014]). Fig. 1 shows53

an intersection scenario in which, when faced54

by a choice between two crosswalks, pedestrian55

traffic light status for each of those crosswalks56

influences pedestrian choice. Similarly, a com-57

parison of the relative distance to each curbside58

could be indicative of future direction of mo-59

tion. Most of the previous work on context-60

based pedestrian trajectory prediction is limited61

to a classification problem (Schulz and Stiefel-62

hagen [2015]). This work, in contrast, provides a continuous trajectory as its prediction output.63

Karasev et al. [2016] used jump-Markov process for long term prediction of pedestrian motion by64

incorporating traffic light and crosswalks as semantic features. The output of their prediction model65

is an occupancy map of feasible trajectory predictions. Our goal is to make prediction confident and66

output the most likely trajectory with increased accuracy.67

Our approach extends ASNSC by incorporating semantic features from the environment. In order to68

meet these objectives, a dictionary of motion primitives is learned as in Chen et al. [2016]. However,69

the transition between these motion primitives is learned with respect to both spatial as well as70

additional environmental contexts. As illustrated in Fig. 2(c), the influence of pedestrian traffic light71

status on the probability of transition between two motion primitives is not captured in ASNSC. Two72

main features are used to incorporate the environmental context in this work: pedestrian traffic light73

status and relative distance to curbside. Similar to the approach followed by Chen et al. [2016], GP74

models are used to learn the transition between motion primitives and subsequently predict pedestrian75

velocity. A squared exponential (SE) kernel function with automatic relevance determination (ARD)76

(Rasmussen and Williams [2006]) is used to determine the relevance of each of the individual features.77

The results show a 26% increase in the accuracy of pedestrian trajectory prediction.78

2 Augmented semi nonnegative sparse coding79

Given a training dataset of n samples, Z = [x1, . . . ,xn], where xi is a column vector of length p, the80

objective is to learn a set of K dictionary atoms, D = [d1, . . . ,dK ], and the corresponding nonneg-81

ative sparse coefficients, S = [s1, . . . ,sn]. Mathematically, this can be formulated as a constrained82

optimization problem of the form (Chen et al. [2016])83

argmin
D,S

||Z−DS||2F +λ

n

∑
i=1
||si||1 (1)

s.t. dk ∈Q, ski ≥ 0 ∀ k,i (2)

where λ is a regularization parameter and Q is the feasible set in which dk resides. Fig. 2(b) shows84

an example of dictionary atoms learned using ASNSC. D is used to segment the original training85

trajectories xi into clusters, where each cluster is best explained by one of the learned dictionary86

atoms.87
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2.1 Trajectory prediction using learned dictionary88

A transition matrix, T ∈ ZK×K is thus created, where T (i, j) denotes the number of trajectories89

exhibiting a transition from i-th dictionary atom to j-th dictionary atom. A transition will, therefore,90

be mathematically represented as a concatenation of two dictionary atoms {di,dj|T (i, j)> 0}. Each91

transition is modeled as a two-dimensional GP flow field (Joseph et al. [2011], Aoude et al. [2013]).92

In particular, two independent GPs, (GPx,GPy), called GP motion patterns are used to learn a mapping93

from chosen features X∈RN to the x-y velocities. ASNSC uses X = Xp = (x,y)> ∈R2 as the feature94

vector.95

GPx : X→ vx, GPy : X→ vy (3)

The learned GP motion patterns, (GPx,GPy), are used for generating a predicted path using (3) as96

well as for computing the likelihood of an observed trajectory, t′ = {(X1
′,v1

′), . . . ,(Xl
′,vl
′)} using97

P(t′|GPx,GPy) = ∏
X′∈t′

N (vx; µGPx(X
′),σ2

GPx(X
′))N (vy; µGPy(X

′),σ2
GPy(X

′)) (4)

Trajectory prediction has two main steps. 1) Unitary GP motion patterns (GP uni
x ,GP uni

y ) are learned98

from training trajectories corresponding to T(i, j) ∀ i = j. The unitary GP motion pattern that most99

likely generated the observed trajectory t′ is determined using (4), which is equivalent to selecting the100

most likely initial dictionary atom dk̂ (Algorithm 1, line 12). 2) The set of possible future dictionary101

atoms can be found as D = { j|Tk̂ j > 0} (Algorithm 1, line 13). Transitional GP motion patterns,102

(GP tran
xk̂ j

,GP tran
yk̂ j

) ∀ j ∈D are used for generating a set of predicted trajectories {s j}.103

3 Context-based augmented semi nonnegative sparse coding104

This work develops ASNSC by incorporating semantic features from the environment in the prediction105

phase (Algorithm 1, lines 5-14) and is motivated by situations in which the environmental context106

influences transition between learned dictionary atoms (see Fig. 2(c)). The proposed approach uses107

two sets of features: 1) learning features, Xp, which are used for learning D (Algorithm 1, lines 1-4);108

and 2) prediction features, X, which are used for prediction using GP models (lines 5-14). ASNSC109

uses the same set of features, Xp, for both learning and prediction. In contrast, CASNSC uses the110

same set of learning features, Xp, as used in ASNSC, but an augmented set of features, X = (Xp : Xc),111

as prediction features. Here, Xc denotes the set of additional context features.112

GPx : X→ vx, GPy : X→ vy (5)

where X ∈ RN s.t. X = (Xp : Xc), Xp ∈ R2 Xc ∈ RN−2 (6)

3.1 Context features113

The relative distance of a pedestrian from the left/right curbside and pedestrian traffic lights’ status114

have been used as additional context features in this work. However, the described framework is115

generalizable to any number and type of feature selection.116

3.1.1 Distance to curbside117

The relative distance of a pedestrian (treated as a point mass) to curbside can be computed using a118

map of the environment. When approaching an intersection, pedestrians are in the vicinity of two119

different curbsides, assumed to intersect at a point (see Fig. 2(a)). A two-dimensional vector, (cl ,cr)
>,120

is therefore used as the curbside feature. This particular feature influences pedestrian intention only121

when the observed trajectory starts on the sidewalk. As explained in Fig. 2(a), this aspect is captured122

by assigning a positive or negative sign to the distance computed when constructing the feature vector.123

3.1.2 Pedestrian traffic light124

A pedestrian’s decision to go left or right is influenced by the status of two pedestrian traffic lights125

(T1, T2) in a four-way intersection scenario. However, in contrast to the curbside feature, a single-126

dimensional feature vector, (tr), is sufficient to capture the environment context with respect to both127

the traffic lights as the change in status of (T1, T2) captures redundant information.128
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Algorithm 1: CASNSC
(Context-based augmented semi nonnegative sparse coding)
/* Learning Phase */

1 D← 0,S← 0;
2 while not converged do
3 {D,S}= ASNSC(Z,Xp,λ )

4 T← Transition_Matrix(D,Z,S);
/* Prediction Phase */

5 X = (Xp : Xc);
6 GP uni← /0,GP tran← /0;
7 for ∀ (i, j) s.t. {T(i, j)> 0} do
8 if i == j then
9 GP uni.insert((GPx(X),GPy(X)))

10 else
11 GP tran.insert((GPx(X),GPy(X)))

12 k̂ = argmaxk P(t′|GP uni
xk

,GP uni
yk

)

13 for ∀ j ∈D = { j|Tk̂ j > 0} do
14 s j← Predict(t′,(GP tran

xk̂ j
,GP tran

yk̂ j
))

!"
!# +

-

(a) (b)

T1

T2

(c)

Figure 2: (a) A typical four-way intersection used to explain the curbside feature. The zoomed portion (right)
shows a pedestrian location as a green star. cl ,cr denote the distance to the two curbsides of interest. If the green
star is in the orange region (curbside), a positive value is assigned to the curbside feature. Otherwise, a negative
value is assigned. (b) From Chen et al. [2016]: examples of dictionary atoms learned using ASNSC; each color
represents one dictionary atom (below). Training trajectory segments that agree with each of the dictionary
atoms are also shown (top). (c) Pedestrian traffic light status influences transition between dictionary atoms. T1
and T2 denote two different traffic lights. Transition between dictionary atoms represented by black and blue
has a higher probability than that between black and green for T1 = 0, T2 = 1.

3.2 Kernel function129

A SE kernel function with ARD is used as it allows for the combination of features with different130

characteristics and scales each feature in accordance with its relevance. Mathematically, it is given by131

the following form (Rasmussen and Williams [2006]):132

k(X,X′) = σ
2
f exp(−1

2
(X−X′)Λ(X−X′)) (7)

where θ = ({Λ},σ2
f )
> and Λ = diag (l−2) (8)

Here, θ is a vector containing all hyperparameters and l is a vector of positive values. Thus, for133

an N-dimensional feature vector, the number of hyperparameters needed to define the SE kernel134

function with ARD is (N+1). The l1, . . . , lN hyper parameters represent characteristic lengths of the135

individual features and aid in determining the relevance of each feature in the N-dimensional feature136

space. In this work, the GPML Toolbox has been used for learning hyperparameters.137
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In particular, for predictions using CASNSC with pedestrian traffic light status as an additional138

contextual feature, X = (x,y, tr)> in (7) and θ = (lx, ly, ltr,σ f )
> in (8). For distance to curbside as139

an additional context feature, in order to account for its dependency on pedestrian position, a linear140

combination of two SE with ARD kernel functions is used as follows:141

k(x,x′) = σ
2
f1 exp(−1

2
(Xp−Xp

′)Λp(Xp−Xp
′))+σ

2
f2 exp(−1

2
(Xc−Xc

′)Λc(Xc−Xc
′)) (9)

where θ = (lx, ly, lcl , lcr ,σ f1 ,σ f2)
> and Xc = (cl ,cr)

> (10)

4 Results142

(a) (b)

Figure 3: ASNSC vs. CASNSC on incorporation of relative distance to
curbside as a context feature. Training trajectories are shown in gray and
prediction is performed for test trajectories in the black circle.

Our approach is tested on real143

pedestrian data collected by a Po-144

laris GEM vehicle equipped with145

three Logitech C920 camera and146

a SICK LMS151 LIDAR (Miller147

and How [2017], Miller et al.148

[2016]). The dataset consists of149

186 training trajectories and 32150

test trajectories. An observation151

history of 2.5 seconds prior to152

the pedestrian entering the inter-153

section is used to predict 5 sec-154

onds ahead in time. Fig. 3 pro-155

vides a qualitative comparison156

of our approach with Chen et al.157

[2016] on the inclusion of dis-158

tance to curbside as an additional159

feature. While ASNSC provides160

all feasible pedestrian trajecto-161

ries, given the intersection geom-162

etry, CASNSC only picks those163

that are closest to the actual tra-164

jectory. Similarly, Fig. 5 compares prediction results in three different scenarios, on the inclusion of165

pedestrian traffic light status as an additional feature.166

T1

T2

incorrect	
predictions	

correct	
predictions	

observed	
path

actual
path

T1

T2

AUC

Figure 4: (Left) Incorrect and correct predictions
at an intersection scenario. (Right) Use of AUC as
a metric for variance in prediction.

In the first scenario (trajectory 18), pedestrian traffic167

lights’ status is given by T1 = 0, T2 = 1 and the168

pedestrian has already crossed the intersection and is169

entering the sidewalk. While ASNSC predicts a set of170

two trajectories, CASNSC provides a more confident171

prediction. In the second scenario (trajectory 25), the172

traffic lights’ status is the same but the pedestrian173

is now entering the intersection and is faced with a174

choice between two crosswalks. CASNSC picks the175

correct direction out of the set of feasible directions176

(as predicted by ASNSC) taking the pedestrian traffic177

light status into account. In the last scenario (trajectory 11), the traffic lights’ status is given by T1 =178

1, T2 = 0. While both ASNSC and CASNSC pick the correct direction, predictions using the latter179

follow the actual trajectory more closely since it can utilize the information that T2 = 0 to predict that180

the pedestrian will continue moving straight, with little or no probability of turning left.181

Fig. 4 illustrates the metrics used for performance evaluation and Table 1 provides a quantitative182

comparison of ASNSC with CASNSC on the inclusion of pedestrian traffic light status as an additional183

context feature. As illustrated in Fig. 4, the Area Under the Curve (AUC) (Hand [2009]) is used as a184

metric for comparing the confidence level of predictions, such that a larger AUC corresponds to a185

lower confidence.186

Table 1 indicates that AUC for predictions using CASNSC is lower than when using ASNSC,187

confirming that CASNSC provides a more confident prediction. Classification accuracy is also188
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Table 1: Performance evaluation comparison of CASNSC with ASNSC

Algorithm Classification accuracy(%) MHD(m) AUC(m2) Computation time(s)

ASNSC 73.95 2.12 75.48 0.14
CASNSC 100 1.79 30.51 0.3

measured, which represents the fraction of correct predictions. For an correct representation of this189

metric, the likelihood of prediction of each trajectory is taken into account when computing the190

accuracy. For instance, if a set of n trajectories is predicted, {t1, . . . , tn}, with their likelihood of191

prediction given by {l1, . . . , ln}, and the correct predictions are identified as {ti} ∀ i ∈C⊂ {1, . . . ,n},192

the classification accuracy is given by:193

Classification accuracy % =
∑i∈C li
∑

n
k=1 lk

×100%. (11)

In addition to the illustrated metrics, the modified Hausdorff distance (MHD) (Dubuisson and Jain194

[1994]) is used to compare predicted pedestrian trajectories with the ground truth. Note that MHD195

is used to compare the correct predictions only. Table 1 shows an improvement in all the chosen196

metrics, with only a slight increase in computation time.197

(a) (b) (c)

Figure 5: Comparison of prediction performance of ASNSC with CASNSC on addition of pedestrian traffic
light status as a context feature.

5 Conclusion198

We extend ASNSC by incorporating relative distance to curbside and pedestrian traffic light status199

as additional context features for more confident and accurate prediction. Our approach, CASNSC,200

shows a 26% improvement in accuracy, 15.5% improvement in MHD of correct predictions and201

reduces variance in prediction, as measured by AUC, by a factor of 2.5. There is scope for further202

improvement on incorporation of features (specific to intersections) that are constant in time (e.g.,203

the existence of crosswalks and areas of interest like subway stations). Furthermore, testing the204

learned prediction model on new but similar, four-way intersections and incorporating interactions205

between pedestrians would provide good insight into the flexibility and robustness of this approach206

respectively.207
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